Menu Close

Solve-the-reccurence-relation-a-n-2-a-n-1-a-n-2-given-a-0-1-and-a-1-0-




Question Number 125202 by bemath last updated on 09/Dec/20
 Solve the reccurence relation  a_n  = 2(a_(n−1) −a_(n−2) ) ; given a_0 =1   and a_1 = 0.
Solvethereccurencerelationan=2(an1an2);givena0=1anda1=0.
Answered by liberty last updated on 09/Dec/20
The characteristic equation :≡ x^2 −2x+2=0  and have the roots are  { ((α=1+i)),((α^−  = 1−i)) :}  Expressing α and α^−  in trigonometric form  we have  { ((α=(√2) (cos (π/4)+ i sin (π/4)))),((α^−  = (√2) (cos (π/4)−i sin (π/4)))) :}  The general solution is a_n  = P (α)^n +Q(α^− )^n   by the Moivre′s Theorem give   a_n  = ((√2))^n  [ P(cos ((nπ)/4)+i sin ((nπ)/4))+Q(cos ((nπ)/4)−i sin ((nπ)/4)) ]   a_n  = ((√2))^n  [ (P+Q)cos ((nπ)/4)+(P−Q)i sin ((nπ)/4) ]  The initial condition imply that   { ((P+Q=1)),(((√2) (((√2)/2) (P+Q)+((√2)/2) (P−Q)i)=0)) :}  we get (P−Q)i = −1  thus the required solution given by    a_n  = ((√2))^n  (cos ((nπ)/4)−sin ((nπ)/4)); for n ≥ 0
Thecharacteristicequation:≡x22x+2=0andhavetherootsare{α=1+iα=1iExpressingαandαintrigonometricformwehave{α=2(cosπ4+isinπ4)α=2(cosπ4isinπ4)Thegeneralsolutionisan=P(α)n+Q(α)nbytheMoivresTheoremgivean=(2)n[P(cosnπ4+isinnπ4)+Q(cosnπ4isinnπ4)]an=(2)n[(P+Q)cosnπ4+(PQ)isinnπ4]Theinitialconditionimplythat{P+Q=12(22(P+Q)+22(PQ)i)=0weget(PQ)i=1thustherequiredsolutiongivenbyan=(2)n(cosnπ4sinnπ4);forn0
Answered by mathmax by abdo last updated on 09/Dec/20
a_n =2(a_(n−1) −a_(n−2) ) ⇒a_n −2a_(n−1) +2a_(n−2) =0 ⇒  a_(n+2) −2a_(n+1) +2a_n =0 →r^2 −2r+2=0  Δ^′  =1−2=−1 ⇒r_1 =1+i  and r_2 =1−i ⇒  a_n =α r_1 ^n  +β r_2 ^n       we have r_1 =(√2)e^((iπ)/4)  and r_2 =(√2)e^(−((iπ)/4))  ⇒  a_n =α((√2))^n e^((inπ)/4) +β ((√2))^n  e^(−((inπ)/4))   a_0 =1 =α+β  a_1 =0 =α(√2)e^((iπ)/4)  +β(√2)e^(−((iπ)/4))  we get the system   { ((α+β=1          →              Δ_s = determinant (((1              1)),(((√2)e^((iπ)/4)         (√2)e^(−((iπ)/4)) ))))),(((√2)e^((iπ)/4) α +(√2)e^(−((iπ)/4)) β =0  )) :}  =(√2)(e^(−((iπ)/4)) −e^((iπ)/4) )=(√2)(−2i×((√2)/2))=−2i  α =( determinant (((1              1)),((0          (√2)e^(−((iπ)/4)) )))/(−2i))=(i/2)(√2)e^(−((iπ)/4))   β =( determinant (((1            1)),(((√2)e^((iπ)/4)    0)))/(−2i))=((−(√2)e^((iπ)/4) )/(−2i))=−((√2)/2)i e^((iπ)/4)  ⇒  a_n =(i/2)(√2)e^((−iπ)/4) ((√2))^n  e^((inπ)/4)   −((√2)/2)i e^((iπ)/4)  ((√2))^n  e^(−((inπ)/4))   =(i/2)((√2))^(n+1) e^((i(n−1)π)/4) −(i/2)((√2))^(n+1)  e^(−((i(n−1)π)/4))   =i((√2))^(n−1)  e^((i(n−1)π)/4) −i((√2))^(n−1)  e^(−((i(n−1)π)/4))   =i((√2))^(n−1) (2i sin((((n−1)π)/4)))=−((√2))^(n+1)  sin((((n−1)π)/4))
an=2(an1an2)an2an1+2an2=0an+22an+1+2an=0r22r+2=0Δ=12=1r1=1+iandr2=1ian=αr1n+βr2nwehaver1=2eiπ4andr2=2eiπ4an=α(2)neinπ4+β(2)neinπ4a0=1=α+βa1=0=α2eiπ4+β2eiπ4wegetthesystem{α+β=1Δs=|112eiπ42eiπ4|2eiπ4α+2eiπ4β=0=2(eiπ4eiπ4)=2(2i×22)=2iα=|1102eiπ4|2i=i22eiπ4β=|112eiπ40|2i=2eiπ42i=22ieiπ4an=i22eiπ4(2)neinπ422ieiπ4(2)neinπ4=i2(2)n+1ei(n1)π4i2(2)n+1ei(n1)π4=i(2)n1ei(n1)π4i(2)n1ei(n1)π4=i(2)n1(2isin((n1)π4))=(2)n+1sin((n1)π4)

Leave a Reply

Your email address will not be published. Required fields are marked *