Solve-the-reccurence-relation-a-n-2-a-n-1-a-n-2-given-a-0-1-and-a-1-0- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 125202 by bemath last updated on 09/Dec/20 Solvethereccurencerelationan=2(an−1−an−2);givena0=1anda1=0. Answered by liberty last updated on 09/Dec/20 Thecharacteristicequation:≡x2−2x+2=0andhavetherootsare{α=1+iα−=1−iExpressingαandα−intrigonometricformwehave{α=2(cosπ4+isinπ4)α−=2(cosπ4−isinπ4)Thegeneralsolutionisan=P(α)n+Q(α−)nbytheMoivre′sTheoremgivean=(2)n[P(cosnπ4+isinnπ4)+Q(cosnπ4−isinnπ4)]an=(2)n[(P+Q)cosnπ4+(P−Q)isinnπ4]Theinitialconditionimplythat{P+Q=12(22(P+Q)+22(P−Q)i)=0weget(P−Q)i=−1thustherequiredsolutiongivenbyan=(2)n(cosnπ4−sinnπ4);forn⩾0 Answered by mathmax by abdo last updated on 09/Dec/20 an=2(an−1−an−2)⇒an−2an−1+2an−2=0⇒an+2−2an+1+2an=0→r2−2r+2=0Δ′=1−2=−1⇒r1=1+iandr2=1−i⇒an=αr1n+βr2nwehaver1=2eiπ4andr2=2e−iπ4⇒an=α(2)neinπ4+β(2)ne−inπ4a0=1=α+βa1=0=α2eiπ4+β2e−iπ4wegetthesystem{α+β=1→Δs=|112eiπ42e−iπ4|2eiπ4α+2e−iπ4β=0=2(e−iπ4−eiπ4)=2(−2i×22)=−2iα=|1102e−iπ4|−2i=i22e−iπ4β=|112eiπ40|−2i=−2eiπ4−2i=−22ieiπ4⇒an=i22e−iπ4(2)neinπ4−22ieiπ4(2)ne−inπ4=i2(2)n+1ei(n−1)π4−i2(2)n+1e−i(n−1)π4=i(2)n−1ei(n−1)π4−i(2)n−1e−i(n−1)π4=i(2)n−1(2isin((n−1)π4))=−(2)n+1sin((n−1)π4) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-59667Next Next post: Question-125204 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.