Menu Close

solve-the-simultaneous-equation-a-sin-x-y-1-2-cos2x-1-2-for-x-and-y-ranging-from-0-to-360-inclusive-b-if-siny-cosx-x-show-that-d-2-y-dx-2-x-2-x-2-3-2-




Question Number 45280 by peter frank last updated on 11/Oct/18
solve the simultaneous equation  a)sin(x+y)=(1/( (√2)   ))  cos2x=((-1  )/2) for x and y ranging from 0 to 360 inclusive  b)if siny+cosx=x  show that (d^2 y/dx^(2 ) ) =(x/((2−x^2 )^(3/2) ))
solvethesimultaneousequationa)sin(x+y)=12cos2x=12forxandyrangingfrom0to360inclusiveb)ifsiny+cosx=xshowthatd2ydx2=x(2x2)32
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
sin(x+y)=(1/( (√2)))=sin(π−(π/4))  x+y=((3π)/4)  cos2x=−(1/2)=cos(π−(π/3))  2x=((2π)/3)   x=(π/3)    y=((3π)/4)−(π/3)=((5π)/(12))  x=(π/3)    y=((5π)/(12))
sin(x+y)=12=sin(ππ4)x+y=3π4cos2x=12=cos(ππ3)2x=2π3x=π3y=3π4π3=5π12x=π3y=5π12
Commented by peter frank last updated on 11/Oct/18
thank you sir.pls help qn2
thankyousir.plshelpqn2
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
(d/dx)((dy/dx))=(x/((2−x^2 )^(3/2) ))  ∫d((dy/dx))=∫((xdx)/((2−x^2 )^(3/2) ))  t^2 =2−x^2     2tdt=−2xdx  RHS=∫((−tdt)/t^3 )         =∫−t^(−2) dt          =−1×(t^(−1) /(−1))=(1/t)=(1/( (√(2−x^2 )) ))  (dy/dx)=(1/( (√(2−x^2 )) ))  ∫dy=∫(dx/( (√(2−x^2 ))))     x=(√2) sinθ    dx=(√2) cosθ dθ  y=∫(((√2) cosθ)/( (√2) cosθ))dθ  y=θ+c  y=sin^(−1) ((x/( (√2))))+c  sin(y−c)=(x/( (√2)))    x=(√2) sin(y−c)  SO pls check the question....
ddx(dydx)=x(2x2)32d(dydx)=xdx(2x2)32t2=2x22tdt=2xdxRHS=tdtt3=t2dt=1×t11=1t=12x2dydx=12x2dy=dx2x2x=2sinθdx=2cosθdθy=2cosθ2cosθdθy=θ+cy=sin1(x2)+csin(yc)=x2x=2sin(yc)SOplscheckthequestion.
Commented by peter frank last updated on 12/Oct/18
its seem there are something wrong.thanks sir
itsseemtherearesomethingwrong.thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *