Menu Close

solve-the-system-4-1-x-2-x-5-1-y-2-y-6-1-z-2-z-x-y-z-xyz-




Question Number 49809 by Abdo msup. last updated on 10/Dec/18
solve the system    { ((((4(√(1+x^2 )))/x) =((5(√(1+y^2 )))/y)=((6(√(1+z^2 )))/z))),((x+y+z=xyz.)) :}   {: (),() }
solvethesystem{41+x2x=51+y2y=61+z2zx+y+z=xyz.}
Commented by MJS last updated on 12/Dec/18
((a(√(1+x^2 )))/x)=((b(√(1+y^2 )))/y)=((c(√(1+z^2 )))/z)  x+y+z=xyz  leads to  x=±((√((a+b+c)(a+b−c)(a+c−b)(b+c−a)))/(a^2 −b^2 −c^2 ))  y=±((√((a+b+c)(a+b−c)(a+c−b)(b+c−a)))/(b^2 −a^2 −c^2 ))  z=±((√((a+b+c)(a+b−c)(a+c−b)(b+c−a)))/(c^2 −a^2 −b^2 ))  ⇒ a, b, c must form a triangle but not a  rectangular one...
a1+x2x=b1+y2y=c1+z2zx+y+z=xyzleadstox=±(a+b+c)(a+bc)(a+cb)(b+ca)a2b2c2y=±(a+b+c)(a+bc)(a+cb)(b+ca)b2a2c2z=±(a+b+c)(a+bc)(a+cb)(b+ca)c2a2b2a,b,cmustformatrianglebutnotarectangularone
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18
x=tana   y=tanb    z=tanc  ((4(√(1+tan^2 a)) )/(tana))=((5(√(1+tan^2 b)))/(tanb))=((6(√(1+tan^2 c)))/(tanc))  (4/(cosa×((sina)/(cosa))))=(5/(sinb))=(6/(sinc))=(1/k)  sina=4k  sinb=5k  sinc=6k  x+y+z=xyz  x+y=xyz−z  x+y=z(xy−1)  x+y=−z(1−xy)  ((x+y)/(1−xy))=−z  ((tana+tanb)/(1−tanatanb))=−tanc  tan(a+b)=−tanc  tan(a+b)=tan(π−c)  a+b+c=π  wait...  sin(a+b)=sin(π−c)  sinacosb+cosasinb=sinc  4k×(√(1−25b^2 )) +(√(1−16k^2 )) ×5k=6k  4(√(1−25k^2 )) +5(√(1−16k^2 )) =6  16(1−25k^2 )=36+25(1−16k^2 )−60(√(1−16k^2 ))   16−400k^2 =36+25−400k^2 −60(√(1−16k^2 ))   −45=−60(√(1−16k^2 ))   9=16(1−16k^2 )  9−16=−16×16k^2   256k^2 =7  k=±((√7)/(16))  sina=((±4(√7))/(16))  x=tana=((±4(√7))/( (√(256−112))))=((±4(√7))/(12))  sinb=((±5(√7))/(16))   y=tanb=((±4(√7))/( (√(256−175))))=((±5(√7))/9)  sinc=((±6(√7))/(16))   z=tanc=((±4(√7))/( (√(256−252))))=((±4(√7))/2)←silly error  in place of 6 i put 4  so corrected..  z=((±6(√7))/2)  pls check...
x=tanay=tanbz=tanc41+tan2atana=51+tan2btanb=61+tan2ctanc4cosa×sinacosa=5sinb=6sinc=1ksina=4ksinb=5ksinc=6kx+y+z=xyzx+y=xyzzx+y=z(xy1)x+y=z(1xy)x+y1xy=ztana+tanb1tanatanb=tanctan(a+b)=tanctan(a+b)=tan(πc)a+b+c=πwaitsin(a+b)=sin(πc)sinacosb+cosasinb=sinc4k×125b2+116k2×5k=6k4125k2+5116k2=616(125k2)=36+25(116k2)60116k216400k2=36+25400k260116k245=60116k29=16(116k2)916=16×16k2256k2=7k=±716sina=±4716x=tana=±47256112=±4712sinb=±5716y=tanb=±47256175=±579sinc=±6716z=tanc=±47256252=±472sillyerrorinplaceof6iput4socorrected..z=±672plscheck
Answered by MJS last updated on 12/Dec/18
x>0∧y>0∧z>0 ∨ x<0∧y<0∧z<0    ((4(√(1+x^2 )))/x)=((5(√(1+y^2 )))/y) ⇒ y=±((5x)/( (√(16−9x^2 ))))  ((4(√(1+x^2 )))/x)=((6(√(1+z^2 )))/z) ⇒ z=±((3x)/( (√(4−5x^2 ))))  let x, y, x greater than zero, due to squaring  we′ll get the other option anyway  x+y+x−xyz=0  x+((5x)/( (√(16−9x^2 ))))+((3x)/( (√(4−5x^2 ))))−x×((5x)/( (√(16−9x^2 ))))×((3x)/( (√(4−5x^2 ))))=0  (√(4−5x^2 ))=p; (√(16−9x^2 ))=q  ⇒ x((5p+pq+3q−15x^2 )/(pq))=0  p=3(((5x^2 −q))/(q+5))  p^2 =3((25x^4 −10qx^2 +q^2 )/(q^2 +10q+25))  p^2 =4−5x^2 ; q^2 =16−9x^2   ⇒ q=((9x^2 −1)/2)  q^2 =((81x^4 −18x^2 +1)/4)  q^2 =16−9x^2   ⇒ x^4 +(2/9)x^2 −(7/9)=0  ⇒ x^2 =−1 ∨ x^2 =(7/9)  ⇒ x=±((√7)/3) ⇒ y=±((5(√7))/9); z=±3(√7)  solutions  ((x),(y),(z) ) = (((−((√7)/3))),((−((5(√7))/9))),((−3(√7))) ) ∨ ((x),(y),(z) ) = ((((√7)/3)),(((5(√7))/9)),((3(√7))) )
x>0y>0z>0x<0y<0z<041+x2x=51+y2yy=±5x169x241+x2x=61+z2zz=±3x45x2letx,y,xgreaterthanzero,duetosquaringwellgettheotheroptionanywayx+y+xxyz=0x+5x169x2+3x45x2x×5x169x2×3x45x2=045x2=p;169x2=qx5p+pq+3q15x2pq=0p=3(5x2q)q+5p2=325x410qx2+q2q2+10q+25p2=45x2;q2=169x2q=9x212q2=81x418x2+14q2=169x2x4+29x279=0x2=1x2=79x=±73y=±579;z=±37solutions(xyz)=(7357937)(xyz)=(7357937)
Commented by Abdo msup. last updated on 12/Dec/18
thankyou sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *