Menu Close

Solve-the-system-of-equations-x-2-y-2-2xy-x-y-1-x-y-x-2-y-in-real-numbers-x-y-




Question Number 122002 by liberty last updated on 13/Nov/20
 Solve the system of equations    { ((x^2 +y^2 +((2xy)/(x+y)) = 1)),(((√(x+y)) = x^2 −y)) :} in real numbers x,y.
Solvethesystemofequations{x2+y2+2xyx+y=1x+y=x2yinrealnumbersx,y.
Answered by MJS_new last updated on 13/Nov/20
(√(x+y))=x^2 −y  squaring & transforming  y^2 −(2x^2 +1)y+(x^4 −x)=0  ⇒ (a) y=x^2 −x∨(b) y=x^2 +x+1  [we have some limitations but let′s just go on  and see what will happen]  inserting in (1) we get  (a) x^6 −2x^5 +2x^4 +2x^3 −3x^2 =0  (b) x^6 +4x^5 +9x^4 +14x^3 +10x^2 +4x=0  ⇒  (a) x^2 (x−1)(x+1)(x^2 −2x+3)=0  (b) x(x+2)(x^4 +2x^3 +5x^2 +4x+2)=0  ⇒  (a) x=−1∨x=0∨x=1  ⇒   y=2  ^  ^  ∨y=0∨y=0  (b) x=−2∨x=0  ⇒   y=3     ∨y=1  testing all pairs we get  (x∣y)=(1∣0)∨(−2∣3)
x+y=x2ysquaring&transformingy2(2x2+1)y+(x4x)=0(a)y=x2x(b)y=x2+x+1[wehavesomelimitationsbutletsjustgoonandseewhatwillhappen]insertingin(1)weget(a)x62x5+2x4+2x33x2=0(b)x6+4x5+9x4+14x3+10x2+4x=0(a)x2(x1)(x+1)(x22x+3)=0(b)x(x+2)(x4+2x3+5x2+4x+2)=0(a)x=1x=0x=1y=2y=0y=0(b)x=2x=0y=3y=1testingallpairsweget(xy)=(10)(23)
Commented by liberty last updated on 13/Nov/20
thank you sir
thankyousir
Answered by liberty last updated on 13/Nov/20
my way   multiply the first eq by x+y give  (x^2 +y^2 )(x+y)+2xy=x+y  adding x^2 +y^2  to both sides of this eq , we are   driven by standard manipulation to  nice factorization :  (x^2 +y^2 )(x+y)+(x+y)^2  = (x^2 +y^2 )+(x+y)  (x^2 +y^2 )(x+y−1)+(x+y)(x+y−1)=0  (x^2 +y^2 +x+y)(x+y−1)=0  The first factor cannot be zero because x+y >0  so x+y−1 must be zero. Inserting   y=1−x into second eq of the system we   find the two solutions (x,y): (1,0) and (−2,3).▲
mywaymultiplythefirsteqbyx+ygive(x2+y2)(x+y)+2xy=x+yaddingx2+y2tobothsidesofthiseq,wearedrivenbystandardmanipulationtonicefactorization:(x2+y2)(x+y)+(x+y)2=(x2+y2)+(x+y)(x2+y2)(x+y1)+(x+y)(x+y1)=0(x2+y2+x+y)(x+y1)=0Thefirstfactorcannotbezerobecausex+y>0sox+y1mustbezero.Insertingy=1xintosecondeqofthesystemwefindthetwosolutions(x,y):(1,0)and(2,3).

Leave a Reply

Your email address will not be published. Required fields are marked *