Menu Close

Solve-the-system-y-x-x-y-x-y-x-y-xy-Find-all-the-real-solutions-other-than-x-0-and-y-0-




Question Number 152178 by mathdanisur last updated on 26/Aug/21
Solve the system   { ((y(√x) + x(√y) = x + y)),(((√x) + (√y) = xy)) :}  Find all the real solutions other than  x = 0  and  y = 0
Solvethesystem{yx+xy=x+yx+y=xyFindalltherealsolutionsotherthanx=0andy=0
Commented by john_santu last updated on 26/Aug/21
 { (((√(xy)) ((√y)+(√x))=x+y⇒(√y)+(√x) =((x+y)/( (√(xy)))))),(((√y)+(√x) = xy)) :}
{xy(y+x)=x+yy+x=x+yxyy+x=xy
Answered by MJS_new last updated on 26/Aug/21
x(√y)+(√x)y=x+y  (√x)+(√y)=xy    x=p^2 ∧p≥0  y=q^2 ∧q≥0    p^2 q+pq^2 =p^2 +q^2   p+q=p^2 q^2     p^2 q+pq^2 −p^2 −q^2 =0  p^2 q^2 −p−q=0    p=u−v∧q=u+v    2(u^3 −u^2 −uv^2 −v^2 )=0 ⇒ v^2 =((u^2 (u−1))/(u+1))  u^4 −2u^2 v^2 +v^4 −2u=0 ⇒  ⇒  u(u^3 −(1/2)u^2 −u−(1/2))=0  ⇒ u=v=0 ⇒ x=y=0    u^3 −(1/2)u^2 −u−(1/2)=0  ⇒ u=(1/6)(1+((73−6(√(87))))^(1/3) +((73+6(√(87))))^(1/3) )  ⇔ u≈1.43756489708  ⇒ v≈.609074760404  ⇒ p≈.828490136678∧q≈2.04663965749  ⇒ x≈.686395906572∧y≈4.18873388759  and obviously we can exchange x and y
xy+xy=x+yx+y=xyx=p2p0y=q2q0p2q+pq2=p2+q2p+q=p2q2p2q+pq2p2q2=0p2q2pq=0p=uvq=u+v2(u3u2uv2v2)=0v2=u2(u1)u+1u42u2v2+v42u=0u(u312u2u12)=0u=v=0x=y=0u312u2u12=0u=16(1+736873+73+6873)u1.43756489708v.609074760404p.828490136678q2.04663965749x.686395906572y4.18873388759andobviouslywecanexchangexandy
Answered by mr W last updated on 26/Aug/21
u=(√x)+(√y)  v=(√(xy))  ⇒uv=u^2 −2v  ⇒u=v^2   v^3 =v^4 −2v  ⇒v=0 ⇒u=0 ⇒x=y=0  or  v^3 −v^2 −2=0  (1/v^2 )+(1/(2v))−(1/2)=0  (1/v)=((((√(87))/(36))+(1/4)))^(1/3) −((((√(87))/(36))−(1/4)))^(1/3)   ⇒v=(1/( ((((√(87))/(36))+(1/4)))^(1/3) −((((√(87))/(36))−(1/4)))^(1/3) ))  (√x) and (√y) are roots of  t^2 −ut+v=0  t^2 −v^2 t+v=0  (√x), (√y)=t=(1/2)(v^2 ±(√(v^4 −4v)))  ⇒x, y=(1/4)(v^2 ±(√(v^4 −4v)))^2 ≈ { ((4.188733888)),((0.686395906)) :}
u=x+yv=xyuv=u22vu=v2v3=v42vv=0u=0x=y=0orv3v22=01v2+12v12=01v=8736+1438736143v=18736+1438736143xandyarerootsoft2ut+v=0t2v2t+v=0x,y=t=12(v2±v44v)x,y=14(v2±v44v)2{4.1887338880.686395906
Commented by mathdanisur last updated on 26/Aug/21
Thank you Ser cool
ThankyouSercool

Leave a Reply

Your email address will not be published. Required fields are marked *