Question Number 79607 by sou99 last updated on 26/Jan/20
$${Solve}\:{this} \\ $$$$\int_{} \frac{\left({x}−{yz}\right)}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xyz}\right)^{\mathrm{3}/\mathrm{2}} }{dz} \\ $$$$ \\ $$$$ \\ $$
Commented by MJS last updated on 26/Jan/20
$$\int\frac{{a}+{bt}}{\left({c}+{dt}\right)^{\mathrm{3}/\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\left[{u}={c}+{dt}\:\rightarrow\:{dt}=\frac{{du}}{{d}}\right] \\ $$$$=\frac{{b}}{{d}^{\mathrm{2}} }\int\frac{{du}}{{u}^{\mathrm{1}/\mathrm{2}} }+\frac{{ad}−{bc}}{{d}^{\mathrm{2}} }\int\frac{{du}}{{u}^{\mathrm{3}/\mathrm{2}} }= \\ $$$$=\frac{\mathrm{2}{b}}{{d}^{\mathrm{2}} }{u}^{\mathrm{1}/\mathrm{2}} −\frac{\mathrm{2}\left({ad}−{bc}\right)}{{d}^{\mathrm{2}} }{u}^{−\mathrm{1}/\mathrm{2}} = \\ $$$$=\frac{\mathrm{2}\left({bu}−{ad}+{bc}\right)}{{d}^{\mathrm{2}} \sqrt{{u}}}=\frac{\mathrm{2}\left({bdt}−{ad}+\mathrm{2}{bc}\right)}{{d}^{\mathrm{2}} \sqrt{{c}+{dt}}}= \\ $$$$\mathrm{now}\:\mathrm{put} \\ $$$${a}={x},\:{b}=−{y},\:{c}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} ,\:{d}=−\mathrm{2}{xy},\:{t}={z} \\ $$$$=\frac{\left({xz}−{y}\right)}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xyz}}}+{C} \\ $$