Menu Close

solve-using-matrix-method-x-y-4-2x-3y-5-




Question Number 37084 by Rio Mike last updated on 08/Jun/18
  solve using matrix method        x − y= 4       2x − 3y= 5
solveusingmatrixmethodxy=42x3y=5
Commented by math khazana by abdo last updated on 09/Jun/18
(s)⇔  (((1       −1)),((2         −3)) )   ((x),(y) )   = ((4),(5) )  ⇔ A. ((x),(y) ) = ((4),(5) )  det A=−1≠0 ⇒  ((x),(y) )   =A^(−1) . ((4),(5) )  A^(−1)  =  ((t(comA))/(det A))   with comA=(−1)^(i+j)  A_(ij)   = (((a_(11)        a_(12) )),((a_(21)         a_(22) )) )   = (((−3         −2)),((   1            1)) )    and  t(comA) =  (((−3         1)),((−2          1)) )   ⇒A^(−1)  =  (((3        −1)),((2          −1)) )   ((x),(y) )    =  (((3          −1)),((2           −1)) )   ((4),(5) ) =  ((7),(3) )  ⇒x=7 and y=3
(s)(1123)(xy)=(45)A.(xy)=(45)detA=10(xy)=A1.(45)A1=t(comA)detAwithcomA=(1)i+jAij=(a11a12a21a22)=(3211)andt(comA)=(3121)A1=(3121)(xy)=(3121)(45)=(73)x=7andy=3
Commented by math khazana by abdo last updated on 09/Jun/18
this method is general for n unknown (x_i ) if  the matrix A is inversible .
thismethodisgeneralfornunknown(xi)ifthematrixAisinversible.

Leave a Reply

Your email address will not be published. Required fields are marked *