Solve-using-Residue-Theorem-I-x-2-x-4-16-dx- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 35960 by Joel579 last updated on 26/May/18 SolveusingResidueTheoremI=∫−∞+∞x2x4+16dx Commented by abdo mathsup 649 cc last updated on 26/May/18 letconsiderthecomplexfunctionφ(z)=z2z4+16φ(z)=z2(z2−4i)(z2+4i)=z2(z−2i)(z+2i)(z−2−i)(z+2−i)φ(z)=z2(z−2eiπ4)(z+2eiπ4)(z−2e−iπ4)(z+2e−iπ4)thepolesofφare2eiπ4,−2eiπ4,2e−iπ4,−2e−iπ4∫−∞+∞φ(z)dz=2iπ{Res(φ,2eiπ4)+Res(φ,−2e−iπ4)}Res(φ,2eiπ4)=limz→2eiπ4(z−2eiπ4)φ(z)=4eiπ24eiπ4(4i+4i)=4i4eiπ4(8i)=18e−iπ4Res(φ,−2e−iπ4)=limz→−2e−iπ4(z+e−iπ4)φ(z)=4e−iπ2−4e−iπ4(4e−iπ4−4i)=−4i−4e−iπ4(−8i)=−18eiπ4∫−∞+∞φ(z)dz=2iπ{18(e−iπ4−eiπ4)}=−iπ4{eiπ4−e−iπ4}=−iπ4{2isin(π4)}=π222=π24soI=π24. Commented by Joel579 last updated on 26/May/18 thankyouverymuch Commented by abdo mathsup 649 cc last updated on 26/May/18 nevermindsirjoel. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-x-x-x-x-x-1-7-1-6-1-5-1-4-1-3-dx-Next Next post: If-4-x-5-y-20-z-what-is-z-in-term-of-x-and-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.