Menu Close

Solve-using-Residue-Theorem-I-x-2-x-4-16-dx-




Question Number 35960 by Joel579 last updated on 26/May/18
Solve using Residue Theorem  I = ∫_(−∞) ^(+∞)  (x^2 /(x^4  + 16)) dx
SolveusingResidueTheoremI=+x2x4+16dx
Commented by abdo mathsup 649 cc last updated on 26/May/18
let consider the complex functionϕ(z)=(z^2 /(z^4  +16))  ϕ(z)= (z^2 /((z^2 −4i)(z^2  +4i)))   = (z^2 /((z −2(√i))(z +2(√i))( z −2(√(−i)))(z+2(√(−i)))))  ϕ(z) = (z^2 /((z −2e^(i(π/4)) )(z+2e^(i(π/4)) )(z −2 e^(−i(π/4)) )( z+2 e^(−i(π/4)) )))  the poles of ϕ are 2 e^(i(π/4))  , −2 e^(i(π/4))   , 2 e^(−i(π/4)) , −2 e^(−i(π/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res( ϕ, 2 e^(i(π/4)) ) +Res( ϕ,−2e^(−i(π/4)) )}  Res(ϕ, 2 e^(i(π/4)) ) = lim_(z→2e^(i(π/4)) )    (z −2e^(i(π/4)) )ϕ(z)  =   ((4 e^(i(π/2)) )/(4 e^(i(π/4))  ( 4i +4i))) = ((4i)/(4 e^(i(π/4))  (8i))) =  (1/8)e^(−i(π/4))   Res(ϕ ,−2 e^(−i(π/4)) ) = lim_(z→ −2e^(−i(π/4)) )   (z+e^(−i(π/4)) )ϕ(z)  =  ((4 e^(−i(π/2)) )/(−4 e^(−i(π/4)) ( 4 e^(−i(π/4)) −4i)))  = ((−4i)/(−4 e^(−i(π/4)) (−8i))) = −(1/8) e^(i(π/4))   ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ (1/8)( e^(−i(π/4))  −e^(i(π/4)) )}  =((−iπ)/4){ e^(i(π/4))  −e^(−i(π/4))  } = ((−iπ)/4){2isin((π/4))}  = (π/2) ((√2)/2) = ((π(√2))/4)  so  I  = ((π(√2))/4)  .
letconsiderthecomplexfunctionφ(z)=z2z4+16φ(z)=z2(z24i)(z2+4i)=z2(z2i)(z+2i)(z2i)(z+2i)φ(z)=z2(z2eiπ4)(z+2eiπ4)(z2eiπ4)(z+2eiπ4)thepolesofφare2eiπ4,2eiπ4,2eiπ4,2eiπ4+φ(z)dz=2iπ{Res(φ,2eiπ4)+Res(φ,2eiπ4)}Res(φ,2eiπ4)=limz2eiπ4(z2eiπ4)φ(z)=4eiπ24eiπ4(4i+4i)=4i4eiπ4(8i)=18eiπ4Res(φ,2eiπ4)=limz2eiπ4(z+eiπ4)φ(z)=4eiπ24eiπ4(4eiπ44i)=4i4eiπ4(8i)=18eiπ4+φ(z)dz=2iπ{18(eiπ4eiπ4)}=iπ4{eiπ4eiπ4}=iπ4{2isin(π4)}=π222=π24soI=π24.
Commented by Joel579 last updated on 26/May/18
thank you very much
thankyouverymuch
Commented by abdo mathsup 649 cc last updated on 26/May/18
nevermind sir joel.
nevermindsirjoel.

Leave a Reply

Your email address will not be published. Required fields are marked *