Menu Close

solve-W-In-4x-x-1-




Question Number 183712 by Michaelfaraday last updated on 29/Dec/22
solve:  W(In(4x))=(√((x−1)))
solve:W(In(4x))=(x1)
Answered by mr W last updated on 29/Dec/22
e^(ln (4x)) ln (4x)=(√(x−1))  (4x)^(4x) =e^(√(x−1))   let t=(√(x−1))≥0  (4t^2 +4)^((4t^2 +4)) =e^t   f(t)=(4t^2 +4)^((4t^2 +4))   g(t)=e^t   f(0)−g(0)=4^4 −e^0 =256−1=255  f′(t)−g′(t)=... >0  ⇒f(t)−g(t) is strictly increasing,  i.e. f(t)−g(t)≥255 for t≥0  ⇒f(t)−g(t)=0 has no roots!  ⇒W(In(4x))=(√(x−1)) has no roots!
eln(4x)ln(4x)=x1(4x)4x=ex1lett=x10(4t2+4)(4t2+4)=etf(t)=(4t2+4)(4t2+4)g(t)=etf(0)g(0)=44e0=2561=255f(t)g(t)=>0f(t)g(t)isstrictlyincreasing,i.e.f(t)g(t)255fort0f(t)g(t)=0hasnoroots!W(In(4x))=x1hasnoroots!
Commented by Michaelfaraday last updated on 29/Dec/22
wow,thanks sir for your help
wow,thankssirforyourhelp

Leave a Reply

Your email address will not be published. Required fields are marked *