Menu Close

solve-without-using-l-hopital-lim-x-e-ln-x-1-e-x-1-




Question Number 91613 by  M±th+et+s last updated on 01/May/20
solve without using l′hopital  lim_(x→e) ((ln(x)−1)/((e/x)−1))
solvewithoutusinglhopitallimxeln(x)1ex1
Commented by abdomathmax last updated on 01/May/20
changement  (e/x)=t give   (x/e)=(1/t) ⇒x =(e/t)  lim_(x→e)     ((ln(x)−1)/((e/x)−1)) =lim_(t→1)    ((ln((e/t))−1)/(t−1))  =lim_(t→1)     ((−lnt)/(t−1)) =−lim_(t→1)    ((ln(t))/(t−1)) =−1
changementex=tgivexe=1tx=etlimxeln(x)1ex1=limt1ln(et)1t1=limt1lntt1=limt1ln(t)t1=1
Commented by  M±th+et+s last updated on 01/May/20
thank you sir
thankyousir
Commented by arcana last updated on 02/May/20
why lim_(t→1)  ((ln (t))/(t−1))=1 without L′Hopital?
whylimt1ln(t)t1=1withoutLHopital?
Commented by mathmax by abdo last updated on 02/May/20
lim_(t→t_0 )    ((f(t)−f(t_0 ))/(t−t_0 )) =f^′ (t_0 ) so  lim_(t→1)   ((ln(t))/(t−1)) =lim_(t→1)  ((ln(t)−ln(1))/(t−1)) =ln^′ (1) =1  (ln^′ (t)=(1/t))
limtt0f(t)f(t0)tt0=f(t0)solimt1ln(t)t1=limt1ln(t)ln(1)t1=ln(1)=1(ln(t)=1t)
Answered by mr W last updated on 02/May/20
let t=(e/x)−1  x→e ⇒t→0  ⇒x=(e/(1+t))  lim_(x→e) ((ln(x)−1)/((e/x)−1))  =lim_(t→0) ((ln (e/(1+t))−1)/t)  =−lim_(t→0) ((ln (1+t))/t)  =−lim_(t→0) {ln (1+t)^(1/t) }  =−lim_(n→∞) {ln (1+(1/n))^n }  ←definition of e  =−ln e  =−1
lett=ex1xet0x=e1+tlimxeln(x)1ex1=limt0lne1+t1t=limt0ln(1+t)t=limt0{ln(1+t)1t}=limn{ln(1+1n)n}definitionofe=lne=1
Commented by  M±th+et+s last updated on 02/May/20
god bless you sir
godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *