Menu Close

solve-x-1-x-2-x-1-x-2-0-




Question Number 160558 by mnjuly1970 last updated on 01/Dec/21
      solve    ⌊ x− (√(1−x^( 2) )) ⌋+⌊ x+ (√(1−x^( 2) )) ⌋=0
$$ \\ $$$$\:\:\:\:{solve} \\ $$$$ \\ $$$$\lfloor\:{x}−\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:\rfloor+\lfloor\:{x}+\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:\rfloor=\mathrm{0} \\ $$$$ \\ $$
Answered by mr W last updated on 02/Dec/21
case 1: 0+0=0  x−(√(1−x^2 ))≥0  x+(√(1−x^2 ))<1  x≥(√(1−x^2 )) ⇒x≥(1/( (√2)))  (√(1−x^2 ))<1−x ⇒x<0  ⇒contradiction ×    case 2: −1+1=0  x−(√(1−x^2 ))<0  x+(√(1−x^2 )) ≥1  x<(√(1−x^2 )) ⇒x<(1/( (√2)))  (√(1−x^2 ))≥1−x ⇒x≥0  ⇒ok ✓    solution is: 0≤x<(1/( (√2)))
$${case}\:\mathrm{1}:\:\mathrm{0}+\mathrm{0}=\mathrm{0} \\ $$$${x}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\geqslant\mathrm{0} \\ $$$${x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }<\mathrm{1} \\ $$$${x}\geqslant\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\Rightarrow{x}\geqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }<\mathrm{1}−{x}\:\Rightarrow{x}<\mathrm{0} \\ $$$$\Rightarrow{contradiction}\:× \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:−\mathrm{1}+\mathrm{1}=\mathrm{0} \\ $$$${x}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }<\mathrm{0} \\ $$$${x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\geqslant\mathrm{1} \\ $$$${x}<\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\Rightarrow{x}<\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\geqslant\mathrm{1}−{x}\:\Rightarrow{x}\geqslant\mathrm{0} \\ $$$$\Rightarrow{ok}\:\checkmark \\ $$$$ \\ $$$${solution}\:{is}:\:\mathrm{0}\leqslant{x}<\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *