Menu Close

solve-x-1-y-1-x-y-x-e-2x-




Question Number 57415 by Abdo msup. last updated on 03/Apr/19
solve (x−1)y^′  +(1+(√x))y =x e^(−2x)
solve(x1)y+(1+x)y=xe2x
Commented by maxmathsup by imad last updated on 12/Apr/19
due to (√x)we must have x≥0   (ed) ⇔((√x)−1)((√x)+1)y^′ +((√( x))+1)y =xe^(−2x)  ⇒  ((√x)−1)y^′  +y =(x/( (√x)+1)) e^(−2x)    (e)  (he) ⇒((√x)−1)y^′  +y =0 ⇒((√x)−1)y^′  =−y ⇒(y^′ /y) =−(1/( (√x)−1)) ⇒  ln∣y∣ =−∫  (dx/( (√x)−1)) =_((√x)=t)    −∫   ((2tdt)/(t−1)) =−2 ∫  ((t−1+1)/(t−1)) dt =−2t −2ln∣t−1∣ +c ⇒  y(x) =(K/((t−1)^2 )) e^(−2t)   =(K/(((√x)−1)^2 )) e^(−2(√x))   let use mvc method  we have  y^′ (x) =K^′ ((√x)−1)^(−2)  e^(−2(√x))   +K { −2 (1/(2(√x)))((√x)−1)^(−3)  e^(−2(√x))  −2 (1/(2(√x))) ((√x)−1)^(−2)  e^(−2(√x)) }  =K^′ ((√x)−1)^(−2)  e^(−2(√x))   −(K/( (√x))){  (1/(((√x)−1)^3 )) +(1/(((√x)−1)^2 ))}e^(−2(√x))    and (e) ⇒  ((√x)−1)(K^′ /(((√x)−1)^2 ))−(K/( (√x))){ (1/(((√x)−1)^2 )) +(1/( (√x)−1))}  +(K/(((√x)−1)^2 )) =(x/( (√x) +1)) ⇒  (K^′ /( (√x)−1)) −(K/( (√x))){((√x)/(((√x)−1)^2 ))} +(K/(((√x)−1)^2 )) =(x/( (√x) +1)) ⇒K^′  =((x((√x)−1))/( (√x)+1)) ⇒  K(x) =∫  ((x((√x)−1))/( (√x)+1)) dx +c  but  ∫  ((x((√x)−1))/( (√x)+1)) dx =_((√x)=t)    ∫  ((t^2 (t−1))/(t+1))(2t)dt =2 ∫  ((t^3 −t^2 )/(t+1)) dt  =2 ∫   ((t^3  +1 −t^2 −1)/(t+1)) dt =2 ∫ (t^2 −t+1) −2 ∫  ((t^2  +1)/(t+1)) dt  =(2/3)t^3  −t^2  +2t   −2 ∫ ((t^2  −1 +2)/(t+1)) dt  =(2/3)t^3  −t^2  +2t −2 ∫(t−1)dt −4ln∣t+1∣  =(2/3)t^3  −2t^2 +4t −4ln∣t+1∣ =(2/3)((√x))^3  −2x +4(√x) −4ln∣1+(√x)∣ ⇒  K(x) =((2x)/3)(√x)−2x+4(√x) −4ln(1+(√x))+c ⇒  y(x) =(e^(−2(√x)) /(((√x)−1)^2 )){ (2/3)x(√x)−2x +4(√x)−4ln(1+(√x)) +C} .
duetoxwemusthavex0(ed)(x1)(x+1)y+(x+1)y=xe2x(x1)y+y=xx+1e2x(e)(he)(x1)y+y=0(x1)y=yyy=1x1lny=dxx1=x=t2tdtt1=2t1+1t1dt=2t2lnt1+cy(x)=K(t1)2e2t=K(x1)2e2xletusemvcmethodwehavey(x)=K(x1)2e2x+K{212x(x1)3e2x212x(x1)2e2x}=K(x1)2e2xKx{1(x1)3+1(x1)2}e2xand(e)(x1)K(x1)2Kx{1(x1)2+1x1}+K(x1)2=xx+1Kx1Kx{x(x1)2}+K(x1)2=xx+1K=x(x1)x+1K(x)=x(x1)x+1dx+cbutx(x1)x+1dx=x=tt2(t1)t+1(2t)dt=2t3t2t+1dt=2t3+1t21t+1dt=2(t2t+1)2t2+1t+1dt=23t3t2+2t2t21+2t+1dt=23t3t2+2t2(t1)dt4lnt+1=23t32t2+4t4lnt+1=23(x)32x+4x4ln1+xK(x)=2x3x2x+4x4ln(1+x)+cy(x)=e2x(x1)2{23xx2x+4x4ln(1+x)+C}.

Leave a Reply

Your email address will not be published. Required fields are marked *