solve-x-1-y-1-x-y-x-e-2x- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 57415 by Abdo msup. last updated on 03/Apr/19 solve(x−1)y′+(1+x)y=xe−2x Commented by maxmathsup by imad last updated on 12/Apr/19 duetoxwemusthavex⩾0(ed)⇔(x−1)(x+1)y′+(x+1)y=xe−2x⇒(x−1)y′+y=xx+1e−2x(e)(he)⇒(x−1)y′+y=0⇒(x−1)y′=−y⇒y′y=−1x−1⇒ln∣y∣=−∫dxx−1=x=t−∫2tdtt−1=−2∫t−1+1t−1dt=−2t−2ln∣t−1∣+c⇒y(x)=K(t−1)2e−2t=K(x−1)2e−2xletusemvcmethodwehavey′(x)=K′(x−1)−2e−2x+K{−212x(x−1)−3e−2x−212x(x−1)−2e−2x}=K′(x−1)−2e−2x−Kx{1(x−1)3+1(x−1)2}e−2xand(e)⇒(x−1)K′(x−1)2−Kx{1(x−1)2+1x−1}+K(x−1)2=xx+1⇒K′x−1−Kx{x(x−1)2}+K(x−1)2=xx+1⇒K′=x(x−1)x+1⇒K(x)=∫x(x−1)x+1dx+cbut∫x(x−1)x+1dx=x=t∫t2(t−1)t+1(2t)dt=2∫t3−t2t+1dt=2∫t3+1−t2−1t+1dt=2∫(t2−t+1)−2∫t2+1t+1dt=23t3−t2+2t−2∫t2−1+2t+1dt=23t3−t2+2t−2∫(t−1)dt−4ln∣t+1∣=23t3−2t2+4t−4ln∣t+1∣=23(x)3−2x+4x−4ln∣1+x∣⇒K(x)=2x3x−2x+4x−4ln(1+x)+c⇒y(x)=e−2x(x−1)2{23xx−2x+4x−4ln(1+x)+C}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-y-2y-2-y-and-y-o-1-Next Next post: let-f-x-2x-4x-dt-t-2-2t-3-1-find-f-x-2-calculate-lim-x-0-f-x-and-lim-x-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.