solve-x-1-y-x-2-y-x-2-e-2x-with-y-3-1- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 57820 by maxmathsup by imad last updated on 12/Apr/19 solvex+1y′−x−2y=x2e−2xwithy(3)=1 Commented by maxmathsup by imad last updated on 14/Apr/19 (he)⇒x+1y′−x−2y=0⇒x+1y′=x−2y⇒y′y=x−2x+1⇒ln∣y∣=∫x−2x+1dx+cchangementx−2x+1=tgivex−2x+1=t2⇒x−2=t2x+t2⇒(1−t2)x=t2+2⇒x=t2+21−t2⇒dxdt=2t(1−t2)−(t2+2)(−2t)(1−t2)2=2t−2t3+2t3+4t(1−t2)2=6t(1−t2)2⇒∫x−2x+1dx=∫6t2(1−t2)2dtwehave∫t2(t2−1)2dt=∫tt(t2−1)2dtbypartsu=tandv′=t(t2−1)2⇒∫t2(t2−1)2dt=−12(t2−1)t−∫−12(t2−1)dt=−t2(t2−1)+12∫(1t−1−1t+1)dt=−t2(t2−1)+12ln∣t−1t+1∣⇒∫x−2x+1dx=−x−2x+12(x−2x+1−1)+12ln∣x−2x+1−1x−2x+1+1∣=−x−22x+11(−3x+1)+12ln∣x−2−x+1x−2+x+1∣=x−2(x+1)6x+1+12ln(….)=x−2x+16+12ln∣x−2−x+1x−2+x+1∣⇒y(x)=Kx+1−x−2x+1+x−2ex−2x+16afterweusethemvcmethod…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-1-e-x-1-e-x-1-2-dx-b-lnx-1-x-c-e-e-sin-lnx-dx-Next Next post: find-the-common-area-of-x-2-3-y-2-1-x-2-y-2-3-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.