Menu Close

solve-x-1-y-x-2-y-x-2-e-2x-with-y-3-1-




Question Number 57820 by maxmathsup by imad last updated on 12/Apr/19
solve (√(x+1))y^′ −(√(x−2))y =x^2  e^(−2x)    with y(3) =1
solvex+1yx2y=x2e2xwithy(3)=1
Commented by maxmathsup by imad last updated on 14/Apr/19
(he) ⇒(√(x+1))y^′ −(√(x−2))y =0 ⇒(√(x+1))y^′ =(√(x−2))y ⇒(y^′ /y) =((√(x−2))/( (√(x+1)))) ⇒  ln∣y∣ = ∫ (√((x−2)/(x+1)))dx +c      changement (√((x−2)/(x+1)))=t give((x−2)/(x+1)) =t^2  ⇒  x−2 =t^2 x +t^2  ⇒(1−t^2 )x =t^2  +2 ⇒x =((t^2  +2)/(1−t^2 )) ⇒(dx/dt) =((2t(1−t^2 )−(t^2 +2)(−2t))/((1−t^2 )^2 ))  =((2t−2t^3 +2t^3  +4t)/((1−t^2 )^2 )) =((6t)/((1−t^2 )^2 )) ⇒∫(√((x−2)/(x+1)))dx =∫ ((6t^2 )/((1−t^2 )^2 )) dt  we have ∫  (t^2 /((t^2 −1)^2 )) dt =∫  t (t/((t^2 −1)^2 )) dt  by parts u =t and v^′  =(t/((t^2 −1)^2 ))  ⇒∫  (t^2 /((t^2 −1)^2 )) dt =−(1/(2(t^2 −1))) t −∫ −(1/(2(t^2 −1))) dt  =−(t/(2(t^2 −1))) +(1/2) ∫  ((1/(t−1)) −(1/(t+1)))dt =−(t/(2(t^2 −1))) +(1/2)ln∣((t−1)/(t+1))∣ ⇒  ∫(√((x−2)/(x+1))) dx =−((√((x−2)/(x+1)))/(2(((x−2)/(x+1))−1))) +(1/2)ln∣(((√((x−2)/(x+1)))−1)/( (√((x−2)/(x+1)))+1))∣  =−((√(x−2))/(2(√(x+1)))) (1/((((−3)/(x+1)))))  +(1/2)ln∣(((√(x−2))−(√(x+1)))/( (√(x−2)) +(√(x+1))))∣ =(((√(x−2))(x+1))/(6(√(x+1)))) +(1/2)ln(....)  =(((√(x−2))(√(x+1)))/6) +(1/2)ln∣(((√(x−2))−(√(x+1)))/( (√(x−2)) +(√(x+1))))∣ ⇒  y(x) = K (√(((√(x+1))−(√(x−2)))/( (√(x+1)) +(√(x−2)))))e^(((√(x−2))(√(x+1)))/6)     after we use the mvc method...  be continued...
(he)x+1yx2y=0x+1y=x2yyy=x2x+1lny=x2x+1dx+cchangementx2x+1=tgivex2x+1=t2x2=t2x+t2(1t2)x=t2+2x=t2+21t2dxdt=2t(1t2)(t2+2)(2t)(1t2)2=2t2t3+2t3+4t(1t2)2=6t(1t2)2x2x+1dx=6t2(1t2)2dtwehavet2(t21)2dt=tt(t21)2dtbypartsu=tandv=t(t21)2t2(t21)2dt=12(t21)t12(t21)dt=t2(t21)+12(1t11t+1)dt=t2(t21)+12lnt1t+1x2x+1dx=x2x+12(x2x+11)+12lnx2x+11x2x+1+1=x22x+11(3x+1)+12lnx2x+1x2+x+1=x2(x+1)6x+1+12ln(.)=x2x+16+12lnx2x+1x2+x+1y(x)=Kx+1x2x+1+x2ex2x+16afterweusethemvcmethodbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *