Question Number 95695 by mathmax by abdo last updated on 27/May/20
$$\mathrm{solve}\:\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} −\mathrm{x}^{\mathrm{3}} \mathrm{y}\:=\:\mathrm{arctan}\left(\mathrm{2x}\right) \\ $$
Answered by mathmax by abdo last updated on 27/May/20
$$\left(\mathrm{he}\right)\:\Rightarrow\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} −\mathrm{x}^{\mathrm{3}} \mathrm{y}\:=\mathrm{0}\:\Rightarrow\frac{\mathrm{y}^{'} }{\mathrm{y}}\:=\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}+\mathrm{1}}\:\Rightarrow\mathrm{ln}\mid\mathrm{y}\mid\:=\int\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}+\mathrm{1}}\:\mathrm{dx}\:+\mathrm{c} \\ $$$$=\int\:\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{1}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\mathrm{dx}+\mathrm{c}\:=\int\:\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}{\mathrm{x}+\mathrm{1}}\mathrm{dx}\:−\int\:\frac{\mathrm{dx}}{\mathrm{x}+\mathrm{1}}+\mathrm{c}\:=\int\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\mathrm{dx}−\mathrm{ln}\mid\mathrm{x}+\mathrm{1}\mid\:+\mathrm{c} \\ $$$$=\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:+\mathrm{x}−\mathrm{ln}\mid\mathrm{x}+\mathrm{1}\:\mid\:+\mathrm{c}\:\Rightarrow\mathrm{y}\:=\frac{\mathrm{k}}{\mid\mathrm{x}+\mathrm{1}\mid}\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:\:\:\:\mathrm{let}\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{on} \\ $$$$\left.\right]−\mathrm{1},+\infty\left[\:\Rightarrow\mathrm{y}\:=\frac{\mathrm{k}}{\mathrm{x}+\mathrm{1}}\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:\:\:\:\:\mathrm{mvc}\:\mathrm{method}\:\rightarrow\right. \\ $$$$\mathrm{y}^{'} \:=\frac{\mathrm{k}^{'} }{\mathrm{x}+\mathrm{1}}\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:+\mathrm{k}\left(−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:+\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}×\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \right) \\ $$$$\left(\mathrm{e}\right)\Rightarrow\mathrm{k}^{'} \mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} −\frac{\mathrm{k}}{\left(\mathrm{x}+\mathrm{1}\right)}\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:+\mathrm{k}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:−\frac{\mathrm{kx}^{\mathrm{3}} }{\mathrm{x}+\mathrm{1}}\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:=\mathrm{arctan}\left(\mathrm{2x}\right) \\ $$$$\Rightarrow\mathrm{k}^{'} \:=\mathrm{arctan}\left(\mathrm{2x}\right)\:\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:\Rightarrow\mathrm{k}\left(\mathrm{x}\right)\:=\int_{.} ^{\mathrm{x}} \:\mathrm{arctan}\left(\mathrm{2u}\right)\mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{u}} \mathrm{du}\:+\mathrm{c}\:\Rightarrow \\ $$$$\mathrm{y}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \left(\:\int_{.} ^{\mathrm{x}} \:\mathrm{arctan}\left(\mathrm{2u}\right)\mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{u}} \:\mathrm{du}\:+\mathrm{c}\right) \\ $$$$=\frac{\mathrm{c}}{\mathrm{x}+\mathrm{1}}\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:+\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{x}} \:\int_{.} ^{\mathrm{x}} \:\mathrm{arctan}\left(\mathrm{2u}\right)\mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{u}} \:\mathrm{du} \\ $$