Menu Close

solve-x-2-1-2-x-




Question Number 26320 by byaw last updated on 24/Dec/17
solve x^2 −1=2^x
$$\mathrm{solve}\:{x}^{\mathrm{2}} −\mathrm{1}=\mathrm{2}^{{x}} \\ $$
Commented by mrW1 last updated on 24/Dec/17
one solution is x=3.
$${one}\:{solution}\:{is}\:{x}=\mathrm{3}. \\ $$
Commented by jota@ last updated on 24/Dec/17
by graphing other solution is  x≈−1.2
$${by}\:{graphing}\:{other}\:{solution}\:{is} \\ $$$${x}\approx−\mathrm{1}.\mathrm{2} \\ $$
Commented by mrW1 last updated on 25/Dec/17
there are totally three solutions:  ≈−1.19825  =3  ≈3.40745
$${there}\:{are}\:{totally}\:{three}\:{solutions}: \\ $$$$\approx−\mathrm{1}.\mathrm{19825} \\ $$$$=\mathrm{3} \\ $$$$\approx\mathrm{3}.\mathrm{40745} \\ $$
Answered by ibraheem160 last updated on 24/Dec/17
((1±(√(17)))/2)
$$\frac{\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$
Commented by mrW1 last updated on 24/Dec/17
they don′t satisfy the equation.
$${they}\:{don}'{t}\:{satisfy}\:{the}\:{equation}. \\ $$
Answered by ibraheem160 last updated on 24/Dec/17
(1+1)^x =x^2 −1  1+x+((x(x−1).1^2 +....∞)/(2!))=x^2 −1  2+2x+x^2 −x=2x^2 −2  x^2 −x−4=0  x=((1±(√((−1)^2 −4(1×−4))))/(2×1))  x=((1±(√(17)))/2)
$$\left(\mathrm{1}+\mathrm{1}\right)^{{x}} ={x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{1}+{x}+\frac{{x}\left({x}−\mathrm{1}\right).\mathrm{1}^{\mathrm{2}} +….\infty}{\mathrm{2}!}={x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{2}+\mathrm{2}{x}+{x}^{\mathrm{2}} −{x}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{4}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}×−\mathrm{4}\right)}}{\mathrm{2}×\mathrm{1}} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Dec/17
The bionomial expansion  (1+y)^x =1+(x/1)y+((x(x−1))/(1.2))y^2        +((x(x−1)(x−2))/(1.2.3))y^3 +...       +((x(x−1)...(x−r+1))/(1.2....r))x^r +...  holds only when ∣y∣<1.  You have used it for y=1
$$\mathrm{The}\:\mathrm{bionomial}\:\mathrm{expansion} \\ $$$$\left(\mathrm{1}+\mathrm{y}\right)^{\mathrm{x}} =\mathrm{1}+\frac{\mathrm{x}}{\mathrm{1}}\mathrm{y}+\frac{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)}{\mathrm{1}.\mathrm{2}}\mathrm{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:+\frac{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)}{\mathrm{1}.\mathrm{2}.\mathrm{3}}\mathrm{y}^{\mathrm{3}} +… \\ $$$$\:\:\:\:\:+\frac{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)…\left(\mathrm{x}−\mathrm{r}+\mathrm{1}\right)}{\mathrm{1}.\mathrm{2}….\mathrm{r}}\mathrm{x}^{\mathrm{r}} +… \\ $$$$\mathrm{holds}\:\mathrm{only}\:\mathrm{when}\:\mid\mathrm{y}\mid<\mathrm{1}. \\ $$$$\mathrm{You}\:\mathrm{have}\:\mathrm{used}\:\mathrm{it}\:\mathrm{for}\:\mathrm{y}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *