Menu Close

solve-x-2-2-1-i-x-5-14i-0-




Question Number 58963 by Tony Lin last updated on 02/May/19
solve x^2 −2(1+i)x−5+14i=0
$${solve}\:{x}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}+{i}\right){x}−\mathrm{5}+\mathrm{14}{i}=\mathrm{0} \\ $$
Answered by tanmay last updated on 02/May/19
x^2 −2x(1+i)+(1+i)^2 −5+14i−(1+i)^2 =0  {x−(1+i)}^2 −5+14i−1−2i−i^2 =0  {x−(1+i)}^2 =5−12i  {x−(1+i)}=±(3−2i)  x=(1+i)±(3−2i)  so x=(1+3+i−2i)and(1−3+i+2i)  x=(4−i) and(−2+3i)
$${x}^{\mathrm{2}} −\mathrm{2}{x}\left(\mathrm{1}+{i}\right)+\left(\mathrm{1}+{i}\right)^{\mathrm{2}} −\mathrm{5}+\mathrm{14}{i}−\left(\mathrm{1}+{i}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left\{{x}−\left(\mathrm{1}+{i}\right)\right\}^{\mathrm{2}} −\mathrm{5}+\mathrm{14}{i}−\mathrm{1}−\mathrm{2}{i}−{i}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left\{{x}−\left(\mathrm{1}+{i}\right)\right\}^{\mathrm{2}} =\mathrm{5}−\mathrm{12}{i} \\ $$$$\left\{{x}−\left(\mathrm{1}+{i}\right)\right\}=\pm\left(\mathrm{3}−\mathrm{2}{i}\right) \\ $$$${x}=\left(\mathrm{1}+{i}\right)\pm\left(\mathrm{3}−\mathrm{2}{i}\right) \\ $$$${so}\:{x}=\left(\mathrm{1}+\mathrm{3}+{i}−\mathrm{2}{i}\right){and}\left(\mathrm{1}−\mathrm{3}+{i}+\mathrm{2}{i}\right) \\ $$$${x}=\left(\mathrm{4}−{i}\right)\:{and}\left(−\mathrm{2}+\mathrm{3}{i}\right) \\ $$
Commented by Tony Lin last updated on 02/May/19
thanks,sir
$${thanks},{sir} \\ $$
Commented by tanmay last updated on 02/May/19
most welcome
$${most}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *