Menu Close

Solve-x-2-2x-1-0-mod-3-




Question Number 114592 by Aziztisffola last updated on 19/Sep/20
Solve : x^2 +2x−1≡0(mod 3)
Solve:x2+2x10(mod3)
Answered by MJS_new last updated on 19/Sep/20
x^2 +2x−1=3k with k∈Z  ⇒ x=−1±(√(3k+2))  if x∈R ⇒ k∈N
x2+2x1=3kwithkZx=1±3k+2ifxRkN
Commented by Aziztisffola last updated on 19/Sep/20
 x also in Z. wich k?
xalsoinZ.wichk?
Commented by Aziztisffola last updated on 19/Sep/20
2+3k   is not a perfect square.
2+3kisnotaperfectsquare.
Commented by MJS_new last updated on 19/Sep/20
there′s no x∈Z
theresnoxZ
Commented by Aziztisffola last updated on 19/Sep/20
yes sir no solution in Z.
yessirnosolutioninZ.
Answered by floor(10²Eta[1]) last updated on 19/Sep/20
x^2 +2x≡1(mod3)  x≡0(mod3)⇒x^2 +2x≢1(mod3)  x≡1(mod3)⇒x^2 +2x≢1(mod3)  x≡2(mod3)⇒x^2 +2x≢1(mod3)  ⇒∄ x∈Z such that: x^2 +2x−1≡0(mod3)
x2+2x1(mod3)x0(mod3)x2+2x1(mod3)x1(mod3)x2+2x1(mod3)x2(mod3)x2+2x1(mod3)xZsuchthat:x2+2x10(mod3)
Commented by Aziztisffola last updated on 19/Sep/20
yes sir that′s it.   x^2 +2x−1≡0(mod3)  ⇔(x+1)^2 ≡2[3]  ⇔(x+1)^2 =2+3k  /k∈Z   and 2+3k≠ n^2   for n in Z.  then no solution.
yessirthatsit.x2+2x10(mod3)(x+1)22[3](x+1)2=2+3k/kZand2+3kn2forninZ.thennosolution.
Answered by 1549442205PVT last updated on 20/Sep/20
 x^2 +2x−1≡0(mod 3)(∗)  ∀x∈Z we always have x=3k±1or x=3k  i)If x=3k then x^2 +2x−1=−1(mod3)  ⇒(∗)has no roots(1)  ii)If x=3k+1 then (x+1)^2 −2=  (3k+2)^2 −2=9k^2 +12k+2)=2(mod3)(2)  iii)If x=3k−1 then (x+1)^2 −2=9k^2 −2  =−2(mod3)(3)  From (1)(2)(3) infer the equation(∗)  has no roots in Z
x2+2x10(mod3)()xZwealwayshavex=3k±1orx=3ki)Ifx=3kthenx2+2x1=1(mod3)()hasnoroots(1)ii)Ifx=3k+1then(x+1)22=(3k+2)22=9k2+12k+2)=2(mod3)(2)iii)Ifx=3k1then(x+1)22=9k22=2(mod3)(3)From(1)(2)(3)infertheequation()hasnorootsinZ

Leave a Reply

Your email address will not be published. Required fields are marked *