Menu Close

Solve-x-2-2x-1-0-mod-3-




Question Number 114592 by Aziztisffola last updated on 19/Sep/20
Solve : x^2 +2x−1≡0(mod 3)
$$\mathrm{Solve}\::\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$
Answered by MJS_new last updated on 19/Sep/20
x^2 +2x−1=3k with k∈Z  ⇒ x=−1±(√(3k+2))  if x∈R ⇒ k∈N
$${x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}=\mathrm{3}{k}\:\mathrm{with}\:{k}\in\mathbb{Z} \\ $$$$\Rightarrow\:{x}=−\mathrm{1}\pm\sqrt{\mathrm{3}{k}+\mathrm{2}} \\ $$$$\mathrm{if}\:{x}\in\mathbb{R}\:\Rightarrow\:{k}\in\mathbb{N} \\ $$
Commented by Aziztisffola last updated on 19/Sep/20
 x also in Z. wich k?
$$\:{x}\:{also}\:{in}\:\mathbb{Z}.\:\mathrm{wich}\:{k}? \\ $$
Commented by Aziztisffola last updated on 19/Sep/20
2+3k   is not a perfect square.
$$\mathrm{2}+\mathrm{3}{k}\:\:\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}. \\ $$
Commented by MJS_new last updated on 19/Sep/20
there′s no x∈Z
$$\mathrm{there}'\mathrm{s}\:\mathrm{no}\:{x}\in\mathbb{Z} \\ $$
Commented by Aziztisffola last updated on 19/Sep/20
yes sir no solution in Z.
$$\mathrm{yes}\:\mathrm{sir}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{in}\:\mathbb{Z}. \\ $$
Answered by floor(10²Eta[1]) last updated on 19/Sep/20
x^2 +2x≡1(mod3)  x≡0(mod3)⇒x^2 +2x≢1(mod3)  x≡1(mod3)⇒x^2 +2x≢1(mod3)  x≡2(mod3)⇒x^2 +2x≢1(mod3)  ⇒∄ x∈Z such that: x^2 +2x−1≡0(mod3)
$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\equiv\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{x}\equiv\mathrm{0}\left(\mathrm{mod3}\right)\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2x}≢\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{x}\equiv\mathrm{1}\left(\mathrm{mod3}\right)\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2x}≢\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{x}\equiv\mathrm{2}\left(\mathrm{mod3}\right)\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2x}≢\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\Rightarrow\nexists\:\mathrm{x}\in\mathbb{Z}\:\mathrm{such}\:\mathrm{that}:\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod3}\right) \\ $$
Commented by Aziztisffola last updated on 19/Sep/20
yes sir that′s it.   x^2 +2x−1≡0(mod3)  ⇔(x+1)^2 ≡2[3]  ⇔(x+1)^2 =2+3k  /k∈Z   and 2+3k≠ n^2   for n in Z.  then no solution.
$$\mathrm{yes}\:\mathrm{sir}\:\mathrm{that}'\mathrm{s}\:\mathrm{it}. \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod3}\right) \\ $$$$\Leftrightarrow\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \equiv\mathrm{2}\left[\mathrm{3}\right] \\ $$$$\Leftrightarrow\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}+\mathrm{3k}\:\:/\mathrm{k}\in\mathbb{Z} \\ $$$$\:\mathrm{and}\:\mathrm{2}+\mathrm{3k}\neq\:\mathrm{n}^{\mathrm{2}} \:\:\mathrm{for}\:\mathrm{n}\:\mathrm{in}\:\mathbb{Z}. \\ $$$$\mathrm{then}\:\mathrm{no}\:\mathrm{solution}. \\ $$
Answered by 1549442205PVT last updated on 20/Sep/20
 x^2 +2x−1≡0(mod 3)(∗)  ∀x∈Z we always have x=3k±1or x=3k  i)If x=3k then x^2 +2x−1=−1(mod3)  ⇒(∗)has no roots(1)  ii)If x=3k+1 then (x+1)^2 −2=  (3k+2)^2 −2=9k^2 +12k+2)=2(mod3)(2)  iii)If x=3k−1 then (x+1)^2 −2=9k^2 −2  =−2(mod3)(3)  From (1)(2)(3) infer the equation(∗)  has no roots in Z
$$\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right)\left(\ast\right) \\ $$$$\forall\mathrm{x}\in\mathbb{Z}\:\mathrm{we}\:\mathrm{always}\:\mathrm{have}\:\mathrm{x}=\mathrm{3k}\pm\mathrm{1or}\:\mathrm{x}=\mathrm{3k} \\ $$$$\left.\mathrm{i}\right)\mathrm{If}\:\mathrm{x}=\mathrm{3k}\:\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}=−\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\Rightarrow\left(\ast\right)\mathrm{has}\:\mathrm{no}\:\mathrm{roots}\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{ii}\right)\mathrm{If}\:\mathrm{x}=\mathrm{3k}+\mathrm{1}\:\mathrm{then}\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}= \\ $$$$\left.\left(\mathrm{3k}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{9k}^{\mathrm{2}} +\mathrm{12k}+\mathrm{2}\right)=\mathrm{2}\left(\mathrm{mod3}\right)\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{iii}\right)\mathrm{If}\:\mathrm{x}=\mathrm{3k}−\mathrm{1}\:\mathrm{then}\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{9k}^{\mathrm{2}} −\mathrm{2} \\ $$$$=−\mathrm{2}\left(\mathrm{mod3}\right)\left(\mathrm{3}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{1}\right)\left(\mathrm{2}\right)\left(\mathrm{3}\right)\:\mathrm{infer}\:\mathrm{the}\:\mathrm{equation}\left(\ast\right) \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{roots}\:\mathrm{in}\:\mathbb{Z} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *