Menu Close

solve-x-2-3-x-6-x-2-1-dx-




Question Number 188034 by Michaelfaraday last updated on 25/Feb/23
solve  ∫((x^2 +3)/(x^6 (x^2 +1)))dx
$${solve} \\ $$$$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{6}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$
Answered by MJS_new last updated on 25/Feb/23
∫((x^2 +3)/(x^6 (x^2 +1)))dx=  =−2∫(dx/(x^2 +1))+2∫(dx/x^2 )−2∫(dx/x^4 )+3∫(dx/x^6 )=  =−2arctan x −(2/x)+(2/(3x^3 ))−(3/(5x^5 ))+C
$$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{6}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx}= \\ $$$$=−\mathrm{2}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{1}}+\mathrm{2}\int\frac{{dx}}{{x}^{\mathrm{2}} }−\mathrm{2}\int\frac{{dx}}{{x}^{\mathrm{4}} }+\mathrm{3}\int\frac{{dx}}{{x}^{\mathrm{6}} }= \\ $$$$=−\mathrm{2arctan}\:{x}\:−\frac{\mathrm{2}}{{x}}+\frac{\mathrm{2}}{\mathrm{3}{x}^{\mathrm{3}} }−\frac{\mathrm{3}}{\mathrm{5}{x}^{\mathrm{5}} }+{C} \\ $$
Commented by Michaelfaraday last updated on 01/Mar/23
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *