Menu Close

solve-x-2-3-y-x-3-1-y-x-2-




Question Number 50430 by Abdo msup. last updated on 16/Dec/18
solve (x^2  +3)y^′  +(x^3 −1)y =x^2
solve(x2+3)y+(x31)y=x2
Commented by Abdo msup. last updated on 17/Dec/18
(he)  (x^2  +3)y^′  +(x^3 −1)y =0 ⇒  (x^2  +3)y^′ =−(x^3 −1)y ⇒(y^′ /y) =−((x^3 −1)/(x^2  +3)) ⇒  ln∣y∣ = ∫  ((1−x^3 )/(x^2 +3)) dx+c =∫   ((1−x(x^2  +3−3))/(x^2  +3))dx +c  = ∫   ((1+3x)/(x^2  +3))dx −∫xdx +c  = (3/2) ∫  ((2x)/(x^2  +3))dx + ∫   (dx/(x^2  +3)) −(x^2 /2) +c  =(3/2)ln(x^2  +3)−(x^2 /2) + ∫  (dx/(x^2  +3)) but  ∫  (dx/(x^2  +3)) =_(x=(√3)u)   ∫     (((√3)du)/(3(1+u^2 )))  =(1/( (√3))) arctan((x/( (√3))))⇒  ln∣y∣ =(3/2)ln(x^2  +3)−(x^2 /2) +(1/( (√3))) arctan((x/( (√3)))) +c⇒  y = K e^(−(x^2 /2))  (x^2  +3)^(3/2)  .e^((1/( (√3)))arctan((x/( (√3)))))   ...be continued...
(he)(x2+3)y+(x31)y=0(x2+3)y=(x31)yyy=x31x2+3lny=1x3x2+3dx+c=1x(x2+33)x2+3dx+c=1+3xx2+3dxxdx+c=322xx2+3dx+dxx2+3x22+c=32ln(x2+3)x22+dxx2+3butdxx2+3=x=3u3du3(1+u2)=13arctan(x3)lny=32ln(x2+3)x22+13arctan(x3)+cy=Kex22(x2+3)32.e13arctan(x3)becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *