Menu Close

solve-x-2-5-2-x-5-




Question Number 178251 by mr W last updated on 14/Oct/22
solve  (x^2 −5)^2 −x=5
$${solve} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{5}\right)^{\mathrm{2}} −{x}=\mathrm{5} \\ $$
Answered by BaliramKumar last updated on 14/Oct/22
(x^2 −5)^2 −x=5    x^2 −5 = (√(5+x))  x^2  = 5+(√(5+x))  x = (√(5+(√(5+x))))  x = (√(5+(√(5+(√(5+...........∞))))))  x = (√(5+x))  x^2 −x−5 = 0  x = ((1±(√(21)))/2)
$$\left({x}^{\mathrm{2}} −\mathrm{5}\right)^{\mathrm{2}} −{x}=\mathrm{5} \\ $$$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{5}\:=\:\sqrt{\mathrm{5}+{x}} \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{5}+\sqrt{\mathrm{5}+{x}} \\ $$$${x}\:=\:\sqrt{\mathrm{5}+\sqrt{\mathrm{5}+{x}}} \\ $$$${x}\:=\:\sqrt{\mathrm{5}+\sqrt{\mathrm{5}+\sqrt{\mathrm{5}+………..\infty}}} \\ $$$${x}\:=\:\sqrt{\mathrm{5}+{x}} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{5}\:=\:\mathrm{0} \\ $$$${x}\:=\:\frac{\mathrm{1}\pm\sqrt{\mathrm{21}}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 14/Oct/22
thanks!
$${thanks}! \\ $$
Answered by Frix last updated on 14/Oct/22
(x^2 −5)^2 −x−5=0  x^4 −10x^2 −x+20=0  (x^2 +x−4)(x^2 −x−5)=0  x=−((1±(√(17)))/2)∨x=((1±(√(21)))/2)
$$\left({x}^{\mathrm{2}} −\mathrm{5}\right)^{\mathrm{2}} −{x}−\mathrm{5}=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −\mathrm{10}{x}^{\mathrm{2}} −{x}+\mathrm{20}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +{x}−\mathrm{4}\right)\left({x}^{\mathrm{2}} −{x}−\mathrm{5}\right)=\mathrm{0} \\ $$$${x}=−\frac{\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{2}}\vee{x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{21}}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 14/Oct/22
thanks!
$${thanks}! \\ $$
Answered by mr W last updated on 14/Oct/22
(x^2 −5)^2 −x^2 =5+x−x^2   (x^2 −5+x)(x^2 −5−x)=−(x^2 −5−x)  (x^2 −4+x)(x^2 −5−x)=0  ⇒x^2 −4+x=0 ⇒x=((−1±(√(17)))/2)  ⇒x^2 −5−x=0 ⇒x=((1±(√(21)))/2)
$$\left({x}^{\mathrm{2}} −\mathrm{5}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} =\mathrm{5}+{x}−{x}^{\mathrm{2}} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{5}+{x}\right)\left({x}^{\mathrm{2}} −\mathrm{5}−{x}\right)=−\left({x}^{\mathrm{2}} −\mathrm{5}−{x}\right) \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{4}+{x}\right)\left({x}^{\mathrm{2}} −\mathrm{5}−{x}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{4}+{x}=\mathrm{0}\:\Rightarrow{x}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{5}−{x}=\mathrm{0}\:\Rightarrow{x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{21}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *