Menu Close

Solve-x-2-6x-x-7-0-




Question Number 15262 by Tinkutara last updated on 08/Jun/17
Solve : x^2  − 6x + [x] + 7 = 0.
$$\mathrm{Solve}\::\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\left[{x}\right]\:+\:\mathrm{7}\:=\:\mathrm{0}. \\ $$
Commented by ajfour last updated on 08/Jun/17
(x−3)^2 =2−[x]  No solution .
$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{2}−\left[{x}\right] \\ $$$${No}\:{solution}\:. \\ $$
Commented by mrW1 last updated on 08/Jun/17
what were if x^2  − 6x + [x] + 5 = 0?
$$\mathrm{what}\:\mathrm{were}\:\mathrm{if}\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\left[{x}\right]\:+\:\mathrm{5}\:=\:\mathrm{0}? \\ $$
Commented by Tinkutara last updated on 09/Jun/17
Any explanation ajfour Sir?
$$\mathrm{Any}\:\mathrm{explanation}\:\mathrm{ajfour}\:\mathrm{Sir}? \\ $$
Commented by ajfour last updated on 09/Jun/17
yes Q.15288 (i tried to upload  image here, it got uploaded as  question).
$${yes}\:{Q}.\mathrm{15288}\:\left({i}\:{tried}\:{to}\:{upload}\right. \\ $$$${image}\:{here},\:{it}\:{got}\:{uploaded}\:{as} \\ $$$$\left.{question}\right). \\ $$
Commented by Tinkutara last updated on 09/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$
Commented by mrW1 last updated on 11/Jun/17
How to solve such equations without  using graph? For example  x^2 −6x+[x]+5=0
$$\mathrm{How}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{such}\:\mathrm{equations}\:\mathrm{without} \\ $$$$\mathrm{using}\:\mathrm{graph}?\:\mathrm{For}\:\mathrm{example} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\left[\mathrm{x}\right]+\mathrm{5}=\mathrm{0} \\ $$
Commented by Tinkutara last updated on 13/Jun/17
Sir I found a good method. We will  write [x] = x − {x} and because we know  that 0 ≤ {x} < 1, we will use this range  in the quadratic expression so formed.  Thus we can solve such type of  questions without graph.
$$\mathrm{Sir}\:\mathrm{I}\:\mathrm{found}\:\mathrm{a}\:\mathrm{good}\:\mathrm{method}.\:\mathrm{We}\:\mathrm{will} \\ $$$$\mathrm{write}\:\left[{x}\right]\:=\:{x}\:−\:\left\{{x}\right\}\:\mathrm{and}\:\mathrm{because}\:\mathrm{we}\:\mathrm{know} \\ $$$$\mathrm{that}\:\mathrm{0}\:\leqslant\:\left\{{x}\right\}\:<\:\mathrm{1},\:\mathrm{we}\:\mathrm{will}\:\mathrm{use}\:\mathrm{this}\:\mathrm{range} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{expression}\:\mathrm{so}\:\mathrm{formed}. \\ $$$$\mathrm{Thus}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{such}\:\mathrm{type}\:\mathrm{of} \\ $$$$\mathrm{questions}\:\mathrm{without}\:\mathrm{graph}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *