Menu Close

solve-x-2-a-bx-2-dx-




Question Number 188035 by Michaelfaraday last updated on 25/Feb/23
solve  ∫(x^2 /((a+bx)^2 ))dx
$${solve} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\left({a}+{bx}\right)^{\mathrm{2}} }{dx} \\ $$
Answered by MJS_new last updated on 25/Feb/23
∫(x^2 /((a+bx)^2 ))dx=  =(1/b^2 )∫dx−((2a)/b^2 )∫(dx/(a+bx))+(a^2 /b^2 )∫(dx/((a+bx)^2 ))=  =(x/b^2 )−(a^2 /(b^3 (a+bx)))−((2a)/b^3 )ln ∣a+bx∣ +C
$$\int\frac{{x}^{\mathrm{2}} }{\left({a}+{bx}\right)^{\mathrm{2}} }{dx}= \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\int{dx}−\frac{\mathrm{2}{a}}{{b}^{\mathrm{2}} }\int\frac{{dx}}{{a}+{bx}}+\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\int\frac{{dx}}{\left({a}+{bx}\right)^{\mathrm{2}} }= \\ $$$$=\frac{{x}}{{b}^{\mathrm{2}} }−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{3}} \left({a}+{bx}\right)}−\frac{\mathrm{2}{a}}{{b}^{\mathrm{3}} }\mathrm{ln}\:\mid{a}+{bx}\mid\:+{C} \\ $$
Commented by Michaelfaraday last updated on 01/Mar/23
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *