Menu Close

Solve-x-2-dy-y-x-y-dx-0-




Question Number 114978 by srijachakraborty last updated on 22/Sep/20
    Solve    x^2 dy + y(x+y)dx=0
$$ \\ $$$$\:\:{Solve}\: \\ $$$$\:{x}^{\mathrm{2}} {dy}\:+\:{y}\left({x}+{y}\right){dx}=\mathrm{0} \\ $$
Answered by soumyasaha last updated on 22/Sep/20
Answered by Dwaipayan Shikari last updated on 22/Sep/20
x^2 (dy/dx)+y(x+y)=0  x^2 (dy/dx)+vx(x+vx)=0        y=vx       (dy/dx)=v+x(dv/dx)  (dy/dx)=−v(1+v)           x(dv/dx)=−2v−v^2   ∫(dv/(−2v−v^2 ))=∫(dx/x)  −∫(dv/(v(v+2)))=∫(dx/x)  −(1/2)∫(1/v)−(1/(v+2))dv=log(x)+C  (1/2)log(((v+2)/v))=log(Cx)  1+((2x)/y)=Cx^2   y=((2x)/(1−Cx^2 ))
$${x}^{\mathrm{2}} \frac{{dy}}{{dx}}+{y}\left({x}+{y}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} \frac{{dy}}{{dx}}+{vx}\left({x}+{vx}\right)=\mathrm{0}\:\:\:\:\:\:\:\:{y}={vx}\:\:\:\:\:\:\:\frac{{dy}}{{dx}}={v}+{x}\frac{{dv}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}=−{v}\left(\mathrm{1}+{v}\right)\:\:\:\:\:\:\:\:\: \\ $$$${x}\frac{{dv}}{{dx}}=−\mathrm{2}{v}−{v}^{\mathrm{2}} \\ $$$$\int\frac{{dv}}{−\mathrm{2}{v}−{v}^{\mathrm{2}} }=\int\frac{{dx}}{{x}} \\ $$$$−\int\frac{{dv}}{{v}\left({v}+\mathrm{2}\right)}=\int\frac{{dx}}{{x}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}}{{v}}−\frac{\mathrm{1}}{{v}+\mathrm{2}}{dv}={log}\left({x}\right)+{C} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{{v}+\mathrm{2}}{{v}}\right)={log}\left({Cx}\right) \\ $$$$\mathrm{1}+\frac{\mathrm{2}{x}}{{y}}={Cx}^{\mathrm{2}} \\ $$$${y}=\frac{\mathrm{2}{x}}{\mathrm{1}−{Cx}^{\mathrm{2}} } \\ $$
Commented by srijachakraborty last updated on 22/Sep/20
thank you sir

Leave a Reply

Your email address will not be published. Required fields are marked *