Question Number 15504 by rish@bh last updated on 11/Jun/17
$$\mathrm{Solve}\:\lceil{x}^{\mathrm{2}} \rceil=\left(\lfloor{x}\rfloor\right)^{\mathrm{2}} +\mathrm{2}{x} \\ $$
Commented by rish@bh last updated on 11/Jun/17
$$\mathrm{I}\:\mathrm{got}\:\mathrm{only}\:\mathrm{0}\:\mathrm{and}\:.\mathrm{5}\:\mathrm{but}\:\mathrm{my}\:\mathrm{book} \\ $$$$\mathrm{says}\:\frac{{n}+\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{0} \\ $$
Commented by mrW1 last updated on 11/Jun/17
$$\mathrm{your}\:\mathrm{book}\:\mathrm{is}\:\mathrm{wrong}.\:\mathrm{you}\:\mathrm{can}\:\mathrm{check} \\ $$$$\mathrm{with}\:\mathrm{n}=\mathrm{1}\Rightarrow\mathrm{x}=\mathrm{1}\Rightarrow\mathrm{1}^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\mathrm{2}\:!!! \\ $$
Commented by rish@bh last updated on 11/Jun/17
$$\mathrm{Thanks}! \\ $$
Answered by mrW1 last updated on 11/Jun/17
$$\mathrm{2x}=\lceil{x}^{\mathrm{2}} \rceil−\left(\lfloor{x}\rfloor\right)^{\mathrm{2}} =\mathrm{integer} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{integer}\:\mathrm{or}\:\mathrm{integer}+\mathrm{0}.\mathrm{5} \\ $$$$\mathrm{let}\:\mathrm{x}=\mathrm{n}+\mathrm{f}\:\mathrm{with}\:\mathrm{f}=\mathrm{0}\:\mathrm{or}\:\mathrm{0}.\mathrm{5} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{f}=\mathrm{0} \\ $$$$\mathrm{x}=\mathrm{n} \\ $$$$\mathrm{n}^{\mathrm{2}} =\mathrm{n}^{\mathrm{2}} +\mathrm{2n} \\ $$$$\Rightarrow\mathrm{n}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{f}=\mathrm{0}.\mathrm{5} \\ $$$$\mathrm{x}=\mathrm{n}+\mathrm{0}.\mathrm{5} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{n}^{\mathrm{2}} +\mathrm{n}+\mathrm{0}.\mathrm{25} \\ $$$$\lceil\mathrm{x}^{\mathrm{2}} \rceil=\mathrm{n}^{\mathrm{2}} +\mathrm{n}+\mathrm{1} \\ $$$$\lfloor\mathrm{x}\rfloor=\mathrm{n} \\ $$$$\mathrm{2x}=\mathrm{2n}+\mathrm{1} \\ $$$$\mathrm{n}^{\mathrm{2}} +\mathrm{n}+\mathrm{1}=\mathrm{n}^{\mathrm{2}} +\mathrm{2n}+\mathrm{1} \\ $$$$\mathrm{n}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{0}.\mathrm{5} \\ $$