Menu Close

solve-x-2-x-2-4x-2-4x-4-x-x-4-x-3-x-2-dx-




Question Number 113278 by mathdave last updated on 12/Sep/20
solve  ∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx
solvex2+x+24x2+4x+4xx4+x3+x2dx
Answered by 1549442205PVT last updated on 13/Sep/20
x^2 +x+2−(√(4x^2 +4x+4))=  ((√(x^2 +x+1)))^2 −2(√(x^2 +x+1))+1  =((√(x^2 +x+1))−1)^2 ,x(√(x^4 +x^3 +x^2 ))=x^2 (√(x^2 +x+1))  Hence,F=∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx  =∫(((√(x^2 +x+1))−1)/(x^2 (√(x^2 +x+1))))dx=∫((1/x^2 )−(1/(x^2 (√(x^2 +x+1)))))dx  We find J=∫(dx/(x^2 (√(x^2 +x+1))))=∫((√(x^2 +x+1))/(x^2 (x^2 +x+1)))dx  =∫(√(x^2 +x+1))(((−x+1)/x^2 )+(x/(x^2 +x+1)))dx  =∫(((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x)+(x/( (√(x^2 +x+1)))))dx  ==∫[((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x)−(1/(2(√(x^2 +x+1))))+((1/2)×((2x+1)/( (√(x^2 +x+1)))))]dx  (1/2)∫((2x+1)/( (√(x^2 +x+1))))dx=(1/2)∫(du/( (√u)))(u=x^2 +x+1)  =(√(x^2 +x+1))  Since ∫(dx/( (√(x^2 +λ))))=ln∣x+(√(x^2 +λ))∣+C  (1/2)∫(dx/( (√(x^2 +x+1))))=(1/2)∫((d(x+(1/2)))/( (√((x+(1/2))^2 +(3/4)))))=(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣  Therefore,we just need find  =∫(((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x))]dx=A+B  A=∫((√(x^2 +x+1))/x^2 )= −∫(√(x^2 +x+1))d((1/x))     =   _(by part) ((−(√(x^2 +x+1)))/x)+∫(1/x)×((2x+1)/( 2(√(x^2 +x+1))))dx  =((−(√(x^2 +x+1)))/x)+∫(dx/( (√(x^2 +x+1))))+∫(dx/(2x(√(x^2 +x+1))))  =((−(√(x^2 +x+1)))/x)+ln∣x+(1/2)+(√(x^2 +x+1))∣+(1/2)M(1)  B=∫((√(x^2 +x+1))/x)dx=     _(by parts) (√(x^2 +x+1))−  −∫[x.((.((((2x+1)x)/(2(√(x^2 +x+1))))−(√(x^2 +x+1))))/x^2 )]dx  =(√(x^2 +x+1))−∫((−x−2)/(2x(√(x^2 +x+1))))dx  =(√(x^2 +x+1))+∫(dx/(2(√(x^2 +x+1))))+∫(dx/(x(√(x^2 +x+1))))  =(√(x^2 +x+1))+(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣+M (2)  M=∫(dx/(x(√(x^2 +x+1))))=∫((2/(2x(√(x^2 +x+1))))×((2x+1−2(√(x^2 +x+1)))/(2x+1−2(√(x^2 +x+1)))))dx  =∫(((2x+1−2(√(x^2 +x+1)))/(2(√(x^2 +x+1))))×(2/(x(2x+1)−2(√(x^2 +x+1)))))dx  =∫(((2x+1)/(2(√(x^2 +x+1))))−1)((1/( (√(x^2 +x+1))−x−1))−(1/( (√(x^2 +x+1))−x+1)))dx  =∫(((((2x+1)/(2(√(x^2 +x+1))))−1)/( (√(x^2 +x+1))−x−1))−((((2x+1)/(2(√(x^2 +x+1))))−1)/( (√(x^2 +x+1))−x+1)))dx  =ln∣ (√(x^2 +x+1))−x−1∣−ln∣ (√(x^2 +x+1))−x+1∣  =ln∣(( (√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣(3)  From (1)(2)(3)we get  A+B=−((√(x^2 +x+1))/x)+ln∣x+(1/2)+(√(x^2 +x+1))∣  +(√(x^2 +x+1))+(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣(4)  Therefore,J=(√(x^2 +x+1))−(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣  +A+B=2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣+  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣.From that  F=−(1/x)+J=−(1/x)+A+B=2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣+  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣+C(C−constant)  Thus,final result is  F=∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx  =−(1/x)+2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣  +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣+C
x2+x+24x2+4x+4=(x2+x+1)22x2+x+1+1=(x2+x+11)2,xx4+x3+x2=x2x2+x+1Hence,F=x2+x+24x2+4x+4xx4+x3+x2dx=x2+x+11x2x2+x+1dx=(1x21x2x2+x+1)dxWefindJ=dxx2x2+x+1=x2+x+1x2(x2+x+1)dx=x2+x+1(x+1x2+xx2+x+1)dx=(x2+x+1x2x2+x+1x+xx2+x+1)dx==[x2+x+1x2x2+x+1x12x2+x+1+(12×2x+1x2+x+1)]dx122x+1x2+x+1dx=12duu(u=x2+x+1)=x2+x+1Sincedxx2+λ=lnx+x2+λ+C12dxx2+x+1=12d(x+12)(x+12)2+34=12lnx+12+x2+x+1Therefore,wejustneedfind=(x2+x+1x2x2+x+1x)]dx=A+BA=x2+x+1x2=x2+x+1d(1x)=bypartx2+x+1x+1x×2x+12x2+x+1dx=x2+x+1x+dxx2+x+1+dx2xx2+x+1=x2+x+1x+lnx+12+x2+x+1+12M(1)B=x2+x+1xdx=bypartsx2+x+1[x..((2x+1)x2x2+x+1x2+x+1)x2]dx=x2+x+1x22xx2+x+1dx=x2+x+1+dx2x2+x+1+dxxx2+x+1=x2+x+1+12lnx+12+x2+x+1+M(2)M=dxxx2+x+1=(22xx2+x+1×2x+12x2+x+12x+12x2+x+1)dx=(2x+12x2+x+12x2+x+1×2x(2x+1)2x2+x+1)dx=(2x+12x2+x+11)(1x2+x+1x11x2+x+1x+1)dx=(2x+12x2+x+11x2+x+1x12x+12x2+x+11x2+x+1x+1)dx=lnx2+x+1x1lnx2+x+1x+1=lnx2+x+1x1x2+x+1x+1(3)From(1)(2)(3)wegetA+B=x2+x+1x+lnx+12+x2+x+1+x2+x+1+12lnx+12+x2+x+1+32lnx2+x+1x1x2+x+1x+1(4)Therefore,J=x2+x+112lnx+12+x2+x+1+A+B=2x2+x+1+lnx+12+x2+x+1++32lnx2+x+1x1x2+x+1x+1.FromthatF=1x+J=1x+A+B=2x2+x+1+lnx+12+x2+x+1++32lnx2+x+1x1x2+x+1x+1+C(Cconstant)Thus,finalresultisF=x2+x+24x2+4x+4xx4+x3+x2dx=1x+2x2+x+1+lnx+12+x2+x+1+32lnx2+x+1x1x2+x+1x+1+C
Commented by mathdave last updated on 12/Sep/20
nice one
niceone
Commented by 1549442205PVT last updated on 13/Sep/20
I like smart Sir′s solution
IlikesmartSirssolution
Commented by Tawa11 last updated on 06/Sep/21
grest sir
grestsir
Answered by MJS_new last updated on 12/Sep/20
∫((√(x^2 +x+1−2(√(x^2 +x+1))+1))/(x^2 (√(x^2 +x+1))))dx=  =∫(dx/x^2 )−∫(dx/(x^2 (√(x^2 +x+1))))  (1)  ∫(dx/x^2 )=−(1/x)  (2)  −∫(dx/(x^2 (√(x^2 +x+1))))=       [t=((√3)/2)(2x+1+2(√(x^2 +x+1)) → dx=((√(3(x^2 +x+1)))/(2x+1+2(√(x^2 +x+1))))]  =−16∫(t/( ((√3)t^2 −2t−(√3))^2 ))dt=  =(√3)∫((1/(2((√3)t−3)))−(1/(2((√3)t+1)))−(3/(((√3)t−3)^2 ))+(1/(((√3)t+2)^2 )))dt=  =((2(t+(√3)))/( (√3)t^2 −2t−(√3)))−(1/2)ln (((√3)t+1)/( (√3)t−3))=  =((√(x^2 +x+1))/x)+(1/2)ln x −(1/2)ln (x+2+2(√(x^2 +x+1))) +C    ⇒    ∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx=  =((−1+(√(x^2 +x+1)))/x)+(1/2)ln x −(1/2)ln (x+2+2(√(x^2 +x+1))) +C
x2+x+12x2+x+1+1x2x2+x+1dx==dxx2dxx2x2+x+1(1)dxx2=1x(2)dxx2x2+x+1=[t=32(2x+1+2x2+x+1dx=3(x2+x+1)2x+1+2x2+x+1]=16t(3t22t3)2dt==3(12(3t3)12(3t+1)3(3t3)2+1(3t+2)2)dt==2(t+3)3t22t312ln3t+13t3==x2+x+1x+12lnx12ln(x+2+2x2+x+1)+Cx2+x+24x2+4x+4xx4+x3+x2dx==1+x2+x+1x+12lnx12ln(x+2+2x2+x+1)+C
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *