Question Number 113278 by mathdave last updated on 12/Sep/20

Answered by 1549442205PVT last updated on 13/Sep/20
![x^2 +x+2−(√(4x^2 +4x+4))= ((√(x^2 +x+1)))^2 −2(√(x^2 +x+1))+1 =((√(x^2 +x+1))−1)^2 ,x(√(x^4 +x^3 +x^2 ))=x^2 (√(x^2 +x+1)) Hence,F=∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx =∫(((√(x^2 +x+1))−1)/(x^2 (√(x^2 +x+1))))dx=∫((1/x^2 )−(1/(x^2 (√(x^2 +x+1)))))dx We find J=∫(dx/(x^2 (√(x^2 +x+1))))=∫((√(x^2 +x+1))/(x^2 (x^2 +x+1)))dx =∫(√(x^2 +x+1))(((−x+1)/x^2 )+(x/(x^2 +x+1)))dx =∫(((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x)+(x/( (√(x^2 +x+1)))))dx ==∫[((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x)−(1/(2(√(x^2 +x+1))))+((1/2)×((2x+1)/( (√(x^2 +x+1)))))]dx (1/2)∫((2x+1)/( (√(x^2 +x+1))))dx=(1/2)∫(du/( (√u)))(u=x^2 +x+1) =(√(x^2 +x+1)) Since ∫(dx/( (√(x^2 +λ))))=ln∣x+(√(x^2 +λ))∣+C (1/2)∫(dx/( (√(x^2 +x+1))))=(1/2)∫((d(x+(1/2)))/( (√((x+(1/2))^2 +(3/4)))))=(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣ Therefore,we just need find =∫(((√(x^2 +x+1))/x^2 )−((√(x^2 +x+1))/x))]dx=A+B A=∫((√(x^2 +x+1))/x^2 )= −∫(√(x^2 +x+1))d((1/x)) = _(by part) ((−(√(x^2 +x+1)))/x)+∫(1/x)×((2x+1)/( 2(√(x^2 +x+1))))dx =((−(√(x^2 +x+1)))/x)+∫(dx/( (√(x^2 +x+1))))+∫(dx/(2x(√(x^2 +x+1)))) =((−(√(x^2 +x+1)))/x)+ln∣x+(1/2)+(√(x^2 +x+1))∣+(1/2)M(1) B=∫((√(x^2 +x+1))/x)dx= _(by parts) (√(x^2 +x+1))− −∫[x.((.((((2x+1)x)/(2(√(x^2 +x+1))))−(√(x^2 +x+1))))/x^2 )]dx =(√(x^2 +x+1))−∫((−x−2)/(2x(√(x^2 +x+1))))dx =(√(x^2 +x+1))+∫(dx/(2(√(x^2 +x+1))))+∫(dx/(x(√(x^2 +x+1)))) =(√(x^2 +x+1))+(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣+M (2) M=∫(dx/(x(√(x^2 +x+1))))=∫((2/(2x(√(x^2 +x+1))))×((2x+1−2(√(x^2 +x+1)))/(2x+1−2(√(x^2 +x+1)))))dx =∫(((2x+1−2(√(x^2 +x+1)))/(2(√(x^2 +x+1))))×(2/(x(2x+1)−2(√(x^2 +x+1)))))dx =∫(((2x+1)/(2(√(x^2 +x+1))))−1)((1/( (√(x^2 +x+1))−x−1))−(1/( (√(x^2 +x+1))−x+1)))dx =∫(((((2x+1)/(2(√(x^2 +x+1))))−1)/( (√(x^2 +x+1))−x−1))−((((2x+1)/(2(√(x^2 +x+1))))−1)/( (√(x^2 +x+1))−x+1)))dx =ln∣ (√(x^2 +x+1))−x−1∣−ln∣ (√(x^2 +x+1))−x+1∣ =ln∣(( (√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣(3) From (1)(2)(3)we get A+B=−((√(x^2 +x+1))/x)+ln∣x+(1/2)+(√(x^2 +x+1))∣ +(√(x^2 +x+1))+(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣ +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣(4) Therefore,J=(√(x^2 +x+1))−(1/2)ln∣x+(1/2)+(√(x^2 +x+1))∣ +A+B=2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣+ +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣.From that F=−(1/x)+J=−(1/x)+A+B=2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣+ +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣+C(C−constant) Thus,final result is F=∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx =−(1/x)+2(√(x^2 +x+1))+ln∣x+(1/2)+(√(x^2 +x+1))∣ +(3/2)ln∣(((√(x^2 +x+1))−x−1)/( (√(x^2 +x+1))−x+1))∣+C](https://www.tinkutara.com/question/Q113340.png)
Commented by mathdave last updated on 12/Sep/20

Commented by 1549442205PVT last updated on 13/Sep/20

Commented by Tawa11 last updated on 06/Sep/21

Answered by MJS_new last updated on 12/Sep/20
![∫((√(x^2 +x+1−2(√(x^2 +x+1))+1))/(x^2 (√(x^2 +x+1))))dx= =∫(dx/x^2 )−∫(dx/(x^2 (√(x^2 +x+1)))) (1) ∫(dx/x^2 )=−(1/x) (2) −∫(dx/(x^2 (√(x^2 +x+1))))= [t=((√3)/2)(2x+1+2(√(x^2 +x+1)) → dx=((√(3(x^2 +x+1)))/(2x+1+2(√(x^2 +x+1))))] =−16∫(t/( ((√3)t^2 −2t−(√3))^2 ))dt= =(√3)∫((1/(2((√3)t−3)))−(1/(2((√3)t+1)))−(3/(((√3)t−3)^2 ))+(1/(((√3)t+2)^2 )))dt= =((2(t+(√3)))/( (√3)t^2 −2t−(√3)))−(1/2)ln (((√3)t+1)/( (√3)t−3))= =((√(x^2 +x+1))/x)+(1/2)ln x −(1/2)ln (x+2+2(√(x^2 +x+1))) +C ⇒ ∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx= =((−1+(√(x^2 +x+1)))/x)+(1/2)ln x −(1/2)ln (x+2+2(√(x^2 +x+1))) +C](https://www.tinkutara.com/question/Q113366.png)
Commented by Tawa11 last updated on 06/Sep/21
