Menu Close

solve-x-2-x-2-x-2-x-1-x-




Question Number 171402 by mnjuly1970 last updated on 14/Jun/22
  solve...     ⌊x^( 2) ⌋+⌊x⌋^( 2) = x^( 2) +x +1        x=?
solvex2+x2=x2+x+1x=?
Answered by floor(10²Eta[1]) last updated on 14/Jun/22
⌊x^2 ⌋=a∈Z⇒x^2 =a+α, 0≤α<1  ⌊x⌋=b∈Z⇒x=b+β, 0≤β<1    a+b^2 =a+α+b+β+1  ⇒b^2 −b=α+β+1⇒1≤b^2 −b<3  ⇒b^2 −b∈{1,2}⇒b^2 −b=2⇒b=2 or b=−1  1 case: b=2  ⌊x⌋=2, x=2+α⇒x^2 =4+4α+α^2 ⇒4≤x^2 <9  x^2 ∈[4,5)∴⌊x^2 ⌋=4  4+2^2 =x^2 +x+1⇒x^2 +x−7=0  ⇒x=((−1+(√(29)))/2)  x^2 ∈[5,6)∴⌊x^2 ⌋=5  5+2^2 =x^2 +x+1⇒x^2 +x−8=0  ⇒x=((−1+(√(33)))/2)  x^2 ∈[6,7)∴⌊x^2 ⌋=6  6+2^2 =x^2 +x+1⇒x^2 +x−9=0  x=((−1+(√(37)))/2)  x^2 ∈[7,8)∴⌊x^2 ⌋=7  7+2^2 =x^2 +x+1⇒x^2 +x−10=0  ⇒x=((−1+(√(41)))/2)  x^2 ∈[7,8)∴⌊x^2 ⌋=8  ⇒x=((−1+(√(45)))/2)  2 case: b=−1  ⌊x⌋=−1, x=−1+α⇒x^2 =1−2α+α^2 ⇒0<x^2 ≤1  x^2 ∈(0,1)∴⌊x^2 ⌋=0  0+(−1)^2 =x^2 +x+1⇒x^2 +x=0  ⇒x=−1⇒x^2 ∉(0,1) (dont work)  x^2 =1∴⌊x^2 ⌋=1  1+(−1)^2 =x^2 +x+1⇒x^2 +x−1=0  x=((−1−(√5))/2)≤−1(dont work)    solutions:  x=((−1+(√(25+4n)))/2), 1≤n≤5, n∈N
x2=aZx2=a+α,0α<1x=bZx=b+β,0β<1a+b2=a+α+b+β+1b2b=α+β+11b2b<3b2b{1,2}b2b=2b=2orb=11case:b=2x=2,x=2+αx2=4+4α+α24x2<9x2[4,5)x2=44+22=x2+x+1x2+x7=0x=1+292x2[5,6)x2=55+22=x2+x+1x2+x8=0x=1+332x2[6,7)x2=66+22=x2+x+1x2+x9=0x=1+372x2[7,8)x2=77+22=x2+x+1x2+x10=0x=1+412x2[7,8)x2=8x=1+4522case:b=1x=1,x=1+αx2=12α+α20<x21x2(0,1)x2=00+(1)2=x2+x+1x2+x=0x=1x2(0,1)(dontwork)x2=1x2=11+(1)2=x2+x+1x2+x1=0x=1521(dontwork)solutions:x=1+25+4n2,1n5,nN
Answered by mr W last updated on 14/Jun/22
x=n+f  ⌊x⌋^2 =n^2   ⌊x^2 ⌋=n^2 +⌊(2n+1)f⌋  x^2 +x+1=n^2 +n+1+(2n+1)f+f^2   2n^2 +⌊(2n+1)f⌋=n^2 +n+1+(2n+1)f+f^2   n^2 −n−1=(2n+1)f+f^2 −⌊(2n+1)f⌋  n^2 −n−1={(2n+1)f}+f^2 ≥0  ⇒n≤−1 or n≥2  n^2 −n−1={(2n+1)f}+f^2 <2  ⇒−1≤n≤2  ⇒n=−1 or n=2  with n=−1, i.e. −1≤x<0:  1+1=x^2 +x+1  x^2 +x−1=0  ⇒x=((−1−(√5))/2) <−1 rejected.  with n=2, i.e. 2≤x<3:  ⌊x^2 ⌋=k with 4≤k≤8  k+4=x^2 +x+1  x^2 +x−(k+3)=0  ⇒x=((−1+(√(13+4k)))/2) ✓  i.e. x=((−1+(√(29)))/2), ((−1+(√(33)))/2), ((−1+(√(37)))/2), ((−1+(√(41)))/2), ((−1+(√(45)))/2)
x=n+fx2=n2x2=n2+(2n+1)fx2+x+1=n2+n+1+(2n+1)f+f22n2+(2n+1)f=n2+n+1+(2n+1)f+f2n2n1=(2n+1)f+f2(2n+1)fn2n1={(2n+1)f}+f20n1orn2n2n1={(2n+1)f}+f2<21n2n=1orn=2withn=1,i.e.1x<0:1+1=x2+x+1x2+x1=0x=152<1rejected.withn=2,i.e.2x<3:x2=kwith4k8k+4=x2+x+1x2+x(k+3)=0x=1+13+4k2i.e.x=1+292,1+332,1+372,1+412,1+452
Commented by floor(10²Eta[1]) last updated on 14/Jun/22
if x=−1⇒x^2 =1  ⌊x^2 ⌋+⌊x⌋^2 =2≠x^2 +x+1=1
ifx=1x2=1x2+x2=2x2+x+1=1
Commented by mr W last updated on 14/Jun/22
i have rejected x=−1.
ihaverejectedx=1.

Leave a Reply

Your email address will not be published. Required fields are marked *