Menu Close

Solve-x-2-x-x-1-greatest-integer-function-fractional-part-function-




Question Number 33733 by rahul 19 last updated on 22/Apr/18
Solve :  (x−2) × [x] = {x} −1 .  • [.]= greatest integer function  • {.}= fractional part  function.
$${Solve}\:: \\ $$$$\left({x}−\mathrm{2}\right)\:×\:\left[{x}\right]\:=\:\left\{{x}\right\}\:−\mathrm{1}\:. \\ $$$$\bullet\:\left[.\right]=\:{greatest}\:{integer}\:{function} \\ $$$$\bullet\:\left\{.\right\}=\:{fractional}\:{part}\:\:{function}. \\ $$
Commented by MJS last updated on 23/Apr/18
x=(n/(n−1)) ∧ n=[x] ⇒ x=2  so something went wrong...      ...you forgot the “−1” on the right side  (x −2)[x]= x −[x]−1 let put [x]=n  (x−2)n−x=n−1  (n−1)x=n−1  x=1∨n=1  n=[x]=1 ⇒ x∈[1;2[
$${x}=\frac{{n}}{{n}−\mathrm{1}}\:\wedge\:{n}=\left[{x}\right]\:\Rightarrow\:{x}=\mathrm{2} \\ $$$$\mathrm{so}\:\mathrm{something}\:\mathrm{went}\:\mathrm{wrong}… \\ $$$$ \\ $$$$ \\ $$$$…\mathrm{you}\:\mathrm{forgot}\:\mathrm{the}\:“−\mathrm{1}''\:\mathrm{on}\:\mathrm{the}\:\mathrm{right}\:\mathrm{side} \\ $$$$\left({x}\:−\mathrm{2}\right)\left[{x}\right]=\:{x}\:−\left[{x}\right]−\mathrm{1}\:\mathrm{let}\:\mathrm{put}\:\left[{x}\right]={n} \\ $$$$\left({x}−\mathrm{2}\right){n}−{x}={n}−\mathrm{1} \\ $$$$\left({n}−\mathrm{1}\right){x}={n}−\mathrm{1} \\ $$$${x}=\mathrm{1}\vee{n}=\mathrm{1} \\ $$$${n}=\left[{x}\right]=\mathrm{1}\:\Rightarrow\:{x}\in\left[\mathrm{1};\mathrm{2}\left[\right.\right. \\ $$
Commented by caravan msup abdo. last updated on 24/Apr/18
yes yes i have forgotten −1 i will delete  this solution and take another try...
$${yes}\:{yes}\:{i}\:{have}\:{forgotten}\:−\mathrm{1}\:{i}\:{will}\:{delete} \\ $$$${this}\:{solution}\:{and}\:{take}\:{another}\:{try}… \\ $$
Answered by MJS last updated on 23/Apr/18
0≤{x}<1 ⇒ −1≤{x}−1<0 ⇒  ⇒ −1≤(x−2)[x]<0  x∈[z;z+1[ ⇒  ⇒ (x−2)[x]=(x−2)z∈[z^2 −2z;z^2 −1[  z^2 −2z=−1∧z^2 −1=0 ⇒ z=1 ⇒            we could also try z^2 −2z=0∧z^2 −1=−1            but in this case −1<(x−2)z≤0 but            −1≤{x}−1<0  ⇒ 1≤x<2
$$\mathrm{0}\leqslant\left\{{x}\right\}<\mathrm{1}\:\Rightarrow\:−\mathrm{1}\leqslant\left\{{x}\right\}−\mathrm{1}<\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:−\mathrm{1}\leqslant\left({x}−\mathrm{2}\right)\left[{x}\right]<\mathrm{0} \\ $$$${x}\in\left[{z};{z}+\mathrm{1}\left[\:\Rightarrow\right.\right. \\ $$$$\Rightarrow\:\left({x}−\mathrm{2}\right)\left[{x}\right]=\left({x}−\mathrm{2}\right){z}\in\left[{z}^{\mathrm{2}} −\mathrm{2}{z};{z}^{\mathrm{2}} −\mathrm{1}\left[\right.\right. \\ $$$${z}^{\mathrm{2}} −\mathrm{2}{z}=−\mathrm{1}\wedge{z}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\:\Rightarrow\:{z}=\mathrm{1}\:\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{we}\:\mathrm{could}\:\mathrm{also}\:\mathrm{try}\:{z}^{\mathrm{2}} −\mathrm{2}{z}=\mathrm{0}\wedge{z}^{\mathrm{2}} −\mathrm{1}=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{but}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:−\mathrm{1}<\left({x}−\mathrm{2}\right){z}\leqslant\mathrm{0}\:\mathrm{but} \\ $$$$\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\leqslant\left\{{x}\right\}−\mathrm{1}<\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}\leqslant{x}<\mathrm{2} \\ $$
Commented by rahul 19 last updated on 23/Apr/18
pls explain the last step.
$${pls}\:{explain}\:{the}\:{last}\:{step}. \\ $$
Commented by MJS last updated on 23/Apr/18
changed my post
$$\mathrm{changed}\:\mathrm{my}\:\mathrm{post} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *