Menu Close

Solve-x-2-y-2-13-i-2x-2-3y-2xy-2-ii-




Question Number 95093 by I want to learn more last updated on 22/May/20
Solve:          x^2   +  y^2   =  13          ....... (i)        2x^2   +  3y  =  2xy^2           ....... (ii)
Solve:x2+y2=13.(i)2x2+3y=2xy2.(ii)
Answered by behi83417@gmail.com last updated on 23/May/20
(2×i−ii)⇒2y^2 −3y=26−2xy^2   ⇒x=((26+3y−2y^2 )/(2y^2 ))  ⇒(((26+3y−2y^2 )/(2y^2 )))^2 +y^2 =13  (26+3y−2y^2 )^2 +4y^6 =52y^4   676+9y^2 +4y^4 +156y−104y^2 −12y^3 +4y^6 =52y^4   ⇒4y^6 −48y^4 −12y^3 −95y^2 +156y+676=0  (y−2)(  p(y)  )=0⇒  ⇒y=2  ,±3.6,−1.6  ⇒x=3,±0.43,3.14
(2×iii)2y23y=262xy2x=26+3y2y22y2(26+3y2y22y2)2+y2=13(26+3y2y2)2+4y6=52y4676+9y2+4y4+156y104y212y3+4y6=52y44y648y412y395y2+156y+676=0(y2)(p(y))=0y=2,±3.6,1.6x=3,±0.43,3.14
Commented by I want to learn more last updated on 23/May/20
I appreciate sir
Iappreciatesir
Answered by 1549442205 last updated on 23/May/20
From (1)we have y^2 =13−x^2 ,putting into  (ii) we get  y=((−2x^3 −2x^2 +26x)/3).Squaring  we get((4x^(6 ) +8x^5 +4x^4 +676x^2 −104x^4 −104x^3 )/9).  Putting into (i)we get 4x^6 +8x^5 −100x^4 −  104x^3 +685x^2 −117=0.This equation  has  four real roots:  x_1 =−0.4058529736 and 0.4337536916,x_3 =3 and Res  x_4 =3.23939445877281  pectively,we get y_1 =−3.582636371 and  y_2 =3.579365549,y_3 =2 and y_4 =1.583137246.Thus,our system of  equations has four solutions:  (x;y)∈{(x_1 ;y_1 );(x_2 ;y_2 );(x_3 ,y_3 );(x_4 ;y_4 )}            [ (y/(x^2 +y^2 )) + (x/(x^2 +y^2 )) ] dx + [(y/(x^2 +y^2 ))−(x/(x^2 +y^2 )) ]dy=0
From(1)wehavey2=13x2,puttinginto(ii)wegety=2x32x2+26x3.Squaringweget4x6+8x5+4x4+676x2104x4104x39.Puttinginto(i)weget4x6+8x5100x4104x3+685x2117=0.Thisequationhasfourrealroots:x1=0.4058529736and0.4337536916,x3=3andResx4=3.23939445877281pectively,wegety1=3.582636371andy2=3.579365549,y3=2andy4=1.583137246.Thus,oursystemofequationshasfoursolutions:(x;y){(x1;y1);(x2;y2);(x3,y3);(x4;y4)}[yx2+y2+xx2+y2]dx+[yx2+y2xx2+y2]dy=0
Commented by I want to learn more last updated on 23/May/20
I appreciate sir
Iappreciatesir

Leave a Reply

Your email address will not be published. Required fields are marked *