solve-x-2-y-x-1-y-x-2-sinx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 97625 by mathmax by abdo last updated on 08/Jun/20 solvex2y″−(x+1)y′=x2sinx Answered by mathmax by abdo last updated on 09/Jun/20 lety′=zso(e)⇒x2z′−(x+1)z=x2sinx(he)→x2z′−(x+1)z=0⇒x2z′=(x+1)z⇒z′z=x+1x2=1x+1x2⇒ln∣z∣=ln∣x∣−1x+c⇒z=k∣x∣e−1xletfindsolutionon]0,+∞[⇒z=kxe−1xmvcmethod→z′=k′xe−1x+k(e−1x+x×1x2e−1x)=k′xe−1x+ke−1x+kxe−1x(e)⇒k′x3e−1x+kx2e−1x+kxe−1x−kx(x+1)e−1x=x2sinx⇒(k′x3+kx2+k−kx2−kx)e−1x=x2sinx⇒k′x3e−1x=x2sinx⇒k′=sinxxe1x⇒k(x)=∫xsintte1tdt+c⇒z(x)=xe−1x{∫xsintte1tdt+c}=xe−1x∫xsintte1tdt+cxe−1xy′=z⇒y(x)=∫xz(u)du+λ=∫x{ue−1u∫usintte1tdt+cue−1u}du+λ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-sin-pix-2-x-4-x-2-1-dx-Next Next post: calculate-2-dx-x-1-3-x-2-1-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.