Menu Close

solve-x-2-y-x-1-y-x-2-sinx-




Question Number 97625 by mathmax by abdo last updated on 08/Jun/20
solve x^2  y^(′′) −(x+1)y^′   =x^2 sinx
solvex2y(x+1)y=x2sinx
Answered by mathmax by abdo last updated on 09/Jun/20
let y^′  =z  so  (e)⇒x^2  z^′ −(x+1)z =x^2  sinx  (he)→x^2 z^′ −(x+1)z =0 ⇒x^2 z^′  =(x+1)z ⇒(z^′ /z) =((x+1)/x^2 ) =(1/x) +(1/x^2 ) ⇒  ln∣z∣ =ln∣x∣−(1/x) +c ⇒z =k∣x∣e^(−(1/x))   let find solution on ]0,+∞[ ⇒  z =kxe^(−(1/x))    mvc method →z^′  =k^′  x e^(−(1/x))  +k(e^(−(1/x))  +x×(1/x^2 )e^(−(1/x)) )  =k^′  x e^(−(1/x))  +k e^(−(1/x))  +(k/x) e^(−(1/x))   (e)⇒k^′  x^3  e^(−(1/x))  +kx^2  e^(−(1/x))  +kx e^(−(1/x))  −kx(x+1)e^(−(1/x))  =x^2  sinx ⇒  (k^′  x^3  +kx^2 +k−kx^2 −kx)e^(−(1/x))  =x^2 sinx ⇒k^′  x^3  e^(−(1/x))  =x^2  sinx ⇒  k^′  =((sinx)/x) e^(1/x)  ⇒ k(x) = ∫^x  ((sint)/t) e^(1/t)  dt +c ⇒  z(x) =x e^(−(1/x)) { ∫^x  ((sint)/t)e^(1/t)  dt +c} =x e^(−(1/x))  ∫^x  ((sint)/t)e^(1/t)  dt +cx e^(−(1/x))    y^′  =z ⇒y(x) =∫^x z(u)du +λ  =∫^x {u e^(−(1/u))  ∫^u  ((sint)/t)e^(1/t)  dt +cu e^(−(1/u)) }du +λ
lety=zso(e)x2z(x+1)z=x2sinx(he)x2z(x+1)z=0x2z=(x+1)zzz=x+1x2=1x+1x2lnz=lnx1x+cz=kxe1xletfindsolutionon]0,+[z=kxe1xmvcmethodz=kxe1x+k(e1x+x×1x2e1x)=kxe1x+ke1x+kxe1x(e)kx3e1x+kx2e1x+kxe1xkx(x+1)e1x=x2sinx(kx3+kx2+kkx2kx)e1x=x2sinxkx3e1x=x2sinxk=sinxxe1xk(x)=xsintte1tdt+cz(x)=xe1x{xsintte1tdt+c}=xe1xxsintte1tdt+cxe1xy=zy(x)=xz(u)du+λ=x{ue1uusintte1tdt+cue1u}du+λ

Leave a Reply

Your email address will not be published. Required fields are marked *