Question Number 110182 by udaythool last updated on 27/Aug/20
$$\mathrm{Solve}\:{x}^{\mathrm{3}} +\mathrm{15}{x}−\mathrm{92}=\mathrm{0} \\ $$
Commented by mr W last updated on 27/Aug/20
$${let}\:{x}={u}+{v} \\ $$$$\left({u}+{v}\right)^{\mathrm{3}} +\mathrm{15}\left({u}+{v}\right)−\mathrm{92}=\mathrm{0} \\ $$$${u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\mathrm{3}\left({uv}+\mathrm{5}\right)\left({u}+{v}\right)−\mathrm{92}=\mathrm{0} \\ $$$${let}\:{uv}+\mathrm{5}=\mathrm{0}\:\Rightarrow{uv}=−\mathrm{5}\:\Rightarrow{u}^{\mathrm{3}} {v}^{\mathrm{3}} =−\mathrm{125} \\ $$$$\Rightarrow{u}^{\mathrm{3}} +{v}^{\mathrm{3}} −\mathrm{92}=\mathrm{0}\:\Rightarrow{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =\mathrm{92} \\ $$$${u}^{\mathrm{3}} \:{and}\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of}\:{z}^{\mathrm{2}} −\mathrm{92}{z}−\mathrm{125}=\mathrm{0} \\ $$$$\Rightarrow{z}=\mathrm{46}\pm\sqrt{\mathrm{46}^{\mathrm{2}} +\mathrm{125}}=\mathrm{46}\pm\mathrm{3}\sqrt{\mathrm{249}} \\ $$$$\Rightarrow{u}=\sqrt[{\mathrm{3}}]{\mathrm{46}+\mathrm{3}\sqrt{\mathrm{249}}} \\ $$$$\Rightarrow{v}=\sqrt[{\mathrm{3}}]{\mathrm{46}−\mathrm{3}\sqrt{\mathrm{249}}} \\ $$$$\Rightarrow{x}=\sqrt[{\mathrm{3}}]{\mathrm{46}+\mathrm{3}\sqrt{\mathrm{249}}}+\sqrt[{\mathrm{3}}]{\mathrm{46}−\mathrm{3}\sqrt{\mathrm{249}}}\approx\mathrm{3}.\mathrm{4339} \\ $$
Commented by udaythool last updated on 28/Aug/20
THANKS
Answered by 1549442205PVT last updated on 28/Aug/20
$$\mathrm{Put}\:\mathrm{x}=\sqrt{\mathrm{5}}\mathrm{y}\Rightarrow\mathrm{5}\sqrt{\mathrm{5}}\mathrm{y}^{\mathrm{3}} +\mathrm{15}\sqrt{\mathrm{5}}\mathrm{y}−\mathrm{92}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{y}^{\mathrm{3}} +\mathrm{3y}−\frac{\mathrm{92}}{\mathrm{5}\sqrt{\mathrm{5}}}=\mathrm{0}\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Put}\:\mathrm{y}=\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\Rightarrow\mathrm{y}^{\mathrm{3}} =\mathrm{z}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{3}} }−\mathrm{3}\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\right) \\ $$$$\mathrm{Replace}\:\mathrm{into}\:\left(\mathrm{1}\right)\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{z}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{3}} }−\frac{\mathrm{92}\sqrt{\mathrm{5}}}{\mathrm{25}}=\mathrm{0}\Leftrightarrow\mathrm{z}^{\mathrm{6}} −\frac{\mathrm{92}\sqrt{\mathrm{5}}}{\mathrm{25}}\mathrm{z}^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{quadratic}\:\mathrm{equation}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:“\mathrm{z}^{\mathrm{3}} '' \\ $$$$\Delta=\left(\frac{\mathrm{92}\sqrt{\mathrm{5}}}{\mathrm{25}}\right)^{\mathrm{2}} +\mathrm{4}=\frac{\mathrm{8464}}{\mathrm{125}}+\mathrm{4}=\frac{\mathrm{8964}}{\mathrm{125}} \\ $$$$\Rightarrow\mathrm{z}^{\mathrm{3}} =\frac{\frac{\mathrm{92}\sqrt{\mathrm{5}}}{\mathrm{25}}\pm\frac{\mathrm{6}\sqrt{\mathrm{1245}}}{\mathrm{25}}}{\mathrm{2}}=\frac{\mathrm{92}\sqrt{\mathrm{5}}\pm\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}} \\ $$$$\left.\mathrm{i}\right)\mathrm{For}\:\mathrm{z}^{\mathrm{3}} =\frac{\mathrm{92}\sqrt{\mathrm{5}}+\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}. \\ $$$$\mathrm{Since}\:\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{a}+\mathrm{b}\right)=\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} ,\mathrm{we}\:\mathrm{have} \\ $$$$\frac{\mathrm{92}\sqrt{\mathrm{5}}+\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}×\frac{\mathrm{92}\sqrt{\mathrm{5}}−\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}=−\mathrm{1}\left(\ast\right) \\ $$$$\mathrm{Hence},.\mathrm{By}\:\mathrm{Vieta}'\mathrm{s}\:\mathrm{theorem}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{z}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{92}\sqrt{\mathrm{5}}+\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}},−\frac{\mathrm{1}}{\mathrm{z}}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{92}\sqrt{\mathrm{5}}−\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}} \\ $$$$\Rightarrow\mathrm{x}=\sqrt{\mathrm{5}}\mathrm{y}=\sqrt{\mathrm{5}}\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\right)= \\ $$$$\sqrt{\mathrm{5}}\left(\:^{\mathrm{3}} \sqrt{\frac{\mathrm{92}\sqrt{\mathrm{5}}+\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}}+\:^{\mathrm{3}} \sqrt{\frac{\mathrm{92}\sqrt{\mathrm{5}}−\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}}\right) \\ $$$$=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{2300}+\mathrm{150}\sqrt{\mathrm{249}\:}}{\mathrm{50}}}+\:^{\mathrm{3}} \sqrt{\frac{\mathrm{2300}−\mathrm{150}\sqrt{\mathrm{249}\:}}{\mathrm{50}}} \\ $$$$==\:^{\mathrm{3}} \sqrt{\mathrm{46}+\mathrm{3}\sqrt{\mathrm{249}}}+\:^{\mathrm{3}} \sqrt{\mathrm{46}−\mathrm{3}\sqrt{\mathrm{249}}} \\ $$$$\left.\mathrm{ii}\right)\mathrm{For}\:\mathrm{z}^{\mathrm{3}} =\:^{\mathrm{3}} \sqrt{\frac{\mathrm{92}\sqrt{\mathrm{5}}−\mathrm{6}\sqrt{\mathrm{1245}\:}}{\mathrm{50}}}.\mathrm{From}\left(\ast\right) \\ $$$$\mathrm{we}\:\mathrm{infer}\:\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{value} \\ $$$$\mathrm{Thus},\mathrm{given}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{3}} +\mathrm{15x}−\mathrm{92}=\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{unique}\:\mathrm{root} \\ $$$$\boldsymbol{\mathrm{x}}=\:^{\mathrm{3}} \sqrt{\mathrm{46}+\mathrm{3}\sqrt{\mathrm{249}}}+\:^{\mathrm{3}} \sqrt{\mathrm{46}−\mathrm{3}\sqrt{\mathrm{249}}} \\ $$
Commented by udaythool last updated on 28/Aug/20
Really I enjoyed this approach.
Thanks