Menu Close

solve-x-3-d-3-y-dx-3-2x-2-d-2-y-dx-2-2y-10-x-1-x-




Question Number 169287 by cortano1 last updated on 28/Apr/22
  solve : x^3  (d^3 y/dx^3 ) + 2x^2  (d^2 y/dx^2 ) +2y = 10(x+(1/x))
solve:x3d3ydx3+2x2d2ydx2+2y=10(x+1x)
Commented by infinityaction last updated on 01/May/22
     let z = log _e x ⇒ x = e^z      {D(D−1)(D−2) + 2D(D−1) + 2}y = 10(e^(z ) +e^(−z) )          where (d/dz) = D  Auxiliary  Equation           m^3 −m^2 +2 = 0          (m+1)(m^2 −2m+2) = 0         m = −1,1+_− i        C.F = c_1 e^(−x) +e^z (c_2 cos z+ c_3 sin z)        C.F    =  c_1 x^(−1)  + x{c_2 cos (log x) + c_3 sin (log x)}             P.I = (1/((D+1)(D^2 −2D+2)))10(e^z  + e^(−z) )           P.I = 10{(1/((D+1)(D^2 −2D+2)))e^z +(1/((D+1)(D^2 −2D+2)))e^(−z) }                P.I      =    10{(e^z /2) + (1/(D+1))∙(e^(−z) /(1+2+2))}              P.I    =10{(e^z /2) + (1/5) (1/((D+1)))e^(−z) }            P.I  =10{(e^(−z) /2) + (e^(−z) /5) (1/((D−1+1)))∙1}           P.I    =  10{(e^z /2) +((ze^(−z) )/5)} = 5x+2x^(−1) log x     y = c_1 x^(−1) +x{c_2 cos (log x)+c_3 sin (log x)}+5x+2x^(−1) log x
letz=logexx=ez{D(D1)(D2)+2D(D1)+2}y=10(ez+ez)whereddz=DAuxiliaryEquationm3m2+2=0(m+1)(m22m+2)=0m=1,1+iC.F=c1ex+ez(c2cosz+c3sinz)C.F=c1x1+x{c2cos(logx)+c3sin(logx)}P.I=1(D+1)(D22D+2)10(ez+ez)P.I=10{1(D+1)(D22D+2)ez+1(D+1)(D22D+2)ez}P.I=10{ez2+1D+1ez1+2+2}P.I=10{ez2+151(D+1)ez}P.I=10{ez2+ez51(D1+1)1}P.I=10{ez2+zez5}=5x+2x1logxy=c1x1+x{c2cos(logx)+c3sin(logx)}+5x+2x1logx
Commented by cortano1 last updated on 28/Apr/22
nice
nice

Leave a Reply

Your email address will not be published. Required fields are marked *