Menu Close

solve-x-3-mod-5-x-1-mod-7-x-6-mod-8-




Question Number 109410 by bobhans last updated on 23/Aug/20
solve  { ((x≡3 (mod 5))),((x≡ 1 (mod 7))),((x ≡ 6 (mod 8))) :}
solve{x3(mod5)x1(mod7)x6(mod8)
Commented by bobhans last updated on 24/Aug/20
thank you all master
thankyouallmaster
Answered by 1xx last updated on 23/Aug/20
solve  { ((x≡3 (mod 5))),((x≡ 1 (mod 7))),((x ≡ 6 (mod 8))) :}  x=5m+3=7n+1=8p+6  5m=7n−2=7n^′ +5=7n^(′′) +14+5=7n^(′′) +19  5m=8p+3=8p^′ +16+3=8p^′ +19  7n^(′′) =8p^′ =7×8=56  5m=56+19=75  x_1 =75+3=78=7×11+1=8×9+6  x_1 =78  5m=56k+19=56k+15+4=(56k+4)+3×5  (56k+4)≡0(mod 5)  (55k+k+4)≡0(mod 5)  (k+4)≡0(mod 5)  k=5t−4  x=56k+4+3×5+3=56k+22  x=56(5t−4)+22  x=280t−202   t∈Z  another way:  ... ...  x_1 =78  ∵ (5,7,8)=0  ∴ [5,7,8]=5×7×8=280  x=x_1 +n[5,7,8]=78+280n    n∈Z
solve{x3(mod5)x1(mod7)x6(mod8)x=5m+3=7n+1=8p+65m=7n2=7n+5=7n+14+5=7n+195m=8p+3=8p+16+3=8p+197n=8p=7×8=565m=56+19=75x1=75+3=78=7×11+1=8×9+6x1=785m=56k+19=56k+15+4=(56k+4)+3×5(56k+4)0(mod5)(55k+k+4)0(mod5)(k+4)0(mod5)k=5t4x=56k+4+3×5+3=56k+22x=56(5t4)+22x=280t202tZanotherway:x1=78(5,7,8)=0[5,7,8]=5×7×8=280x=x1+n[5,7,8]=78+280nnZ
Answered by floor(10²Eta[1]) last updated on 23/Aug/20
x≡6(mod 8)⇒x=8a+6  8a+6≡3(mod 5)⇒a≡4(mod 5)∴a=5b+4  ⇒x=8(5b+4)+6=40b+38  40b+38≡1(mod 7)⇒b≡1(mod 7)∴b=7c+1  ⇒x=40(7c+1)+38  ∴ x=280c+78, c∈Z  x∈{...,−482, −202, 78, 358,...}
x6(mod8)x=8a+68a+63(mod5)a4(mod5)a=5b+4x=8(5b+4)+6=40b+3840b+381(mod7)b1(mod7)b=7c+1x=40(7c+1)+38x=280c+78,cZx{,482,202,78,358,}
Commented by 1xx last updated on 23/Aug/20
Yes.I forgot x<0. Thank you!
Yes.Iforgotx<0.Thankyou!
Answered by john santu last updated on 24/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *