Menu Close

solve-x-4-18x-35-0-by-using-substitution-x-u-v-




Question Number 78683 by berket last updated on 19/Jan/20
solve x^4 −18x−35=0 by using substitution x= u+v
$${solve}\:{x}^{\mathrm{4}} −\mathrm{18}{x}−\mathrm{35}=\mathrm{0}\:{by}\:{using}\:{substitution}\:{x}=\:{u}+{v} \\ $$
Commented by john santu last updated on 20/Jan/20
x=u+v ⇒x^3 =u^3 +v^3 +3uv(u+v)  x^4 −18x−35=0  x(x^3 −18)−35=0  x(u^3 +v^3 +3uvx−18)−35=0  3uv x^2 +(u^3 +v^3 −18)x−35=0
$${x}={u}+{v}\:\Rightarrow{x}^{\mathrm{3}} ={u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\mathrm{3}{uv}\left({u}+{v}\right) \\ $$$${x}^{\mathrm{4}} −\mathrm{18}{x}−\mathrm{35}=\mathrm{0} \\ $$$${x}\left({x}^{\mathrm{3}} −\mathrm{18}\right)−\mathrm{35}=\mathrm{0} \\ $$$${x}\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\mathrm{3}{uvx}−\mathrm{18}\right)−\mathrm{35}=\mathrm{0} \\ $$$$\mathrm{3}{uv}\:{x}^{\mathrm{2}} +\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} −\mathrm{18}\right){x}−\mathrm{35}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$
Commented by MJS last updated on 20/Jan/20
x^4 ?
$${x}^{\mathrm{4}} ? \\ $$
Commented by john santu last updated on 20/Jan/20
x =((18−(u^3 +v^3 )±(√((u^3 +v^3 −18)^2 +420uv)))/(6uv))   hi hi hi ...i don′t know
$${x}\:=\frac{\mathrm{18}−\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} \right)\pm\sqrt{\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} −\mathrm{18}\right)^{\mathrm{2}} +\mathrm{420}{uv}}}{\mathrm{6}{uv}}\: \\ $$$${hi}\:{hi}\:{hi}\:…{i}\:{don}'{t}\:{know} \\ $$
Commented by MJS last updated on 20/Jan/20
this is no solution as you know...  x=u+v leads to Cardano′s solution for  x^3 +px+q=0  in this case, for x^3 ... one solution is x=5, so  I think it′s a typo
$$\mathrm{this}\:\mathrm{is}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{as}\:\mathrm{you}\:\mathrm{know}… \\ $$$${x}={u}+{v}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{solution}\:\mathrm{for} \\ $$$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case},\:\mathrm{for}\:{x}^{\mathrm{3}} …\:\mathrm{one}\:\mathrm{solution}\:\mathrm{is}\:{x}=\mathrm{5},\:\mathrm{so} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{typo} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *