Menu Close

solve-x-4-x-3-lt-2x-1-2-




Question Number 117027 by I want to learn more last updated on 09/Oct/20
solve:    ((x  −  4)/(x  −  3))   <   ((2x  −  1)/2)
solve:x4x3<2x12
Answered by bemath last updated on 09/Oct/20
⇒((x−4)/(x−3)) −((2x−1)/2) < 0  ⇒ ((2x−8−(2x−1)(x−3))/(2(x−3))) < 0  ⇒ ((2x−8−(2x^2 −7x+3))/(2(x−3))) < 0  ⇒((−2x^2 +9x−11)/(2(x−3))) < 0  ⇒((2x^2 −9x+11)/(2(x−3))) > 0  ⇒((x^2 −(9/2)x+((11)/2))/(x−3)) > 0  ⇒(((x−(9/4))^2 −((81)/(16))+((88)/(16)))/(x−3)) > 0  ⇒ (((x−(9/4))^2 +(7/(16)))/(x−3)) > 0   the solution x > 3
x4x32x12<02x8(2x1)(x3)2(x3)<02x8(2x27x+3)2(x3)<02x2+9x112(x3)<02x29x+112(x3)>0x292x+112x3>0(x94)28116+8816x3>0(x94)2+716x3>0thesolutionx>3
Commented by I want to learn more last updated on 09/Oct/20
Thanks sir
Thankssir
Answered by 1549442205PVT last updated on 09/Oct/20
((x−4)/(x−3))<((2x−1)/2)⇔((x−4)/(x−3))−((2x−1)/2)<0  ((2x−8−(2x^2 −7x+3))/(2(x−3)))<0  ⇔((−2x^2 +9x−11)/(x−3))<0⇔((2x^2 −9x+11)/(x−3))>0(1)  2x^2 −9x+11=2(x−(9/4))^2 +(7/8)>0 ∀x∈R  Hence,(1)⇔x−3>0⇔x>3  Thus,the given inequality has set of  roots is   S=(3;+∞)
x4x3<2x12x4x32x12<02x8(2x27x+3)2(x3)<02x2+9x11x3<02x29x+11x3>0(1)2x29x+11=2(x94)2+78>0xRHence,(1)x3>0x>3Thus,thegiveninequalityhassetofrootsisS=(3;+)
Commented by bemath last updated on 09/Oct/20
gave kudos
gavekudos
Commented by I want to learn more last updated on 09/Oct/20
Thanks sir
Thankssir
Commented by 1549442205PVT last updated on 09/Oct/20
You are welcome.
Youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *