Menu Close

solve-x-Inx-dx-




Question Number 185959 by Michaelfaraday last updated on 30/Jan/23
solve:  ∫x^(Inx) dx
$${solve}: \\ $$$$\int{x}^{{Inx}} {dx} \\ $$
Answered by Frix last updated on 30/Jan/23
∫x^(ln x) dx =^(t=(1/2)+ln x)  (1/( (e)^(1/4) ))∫e^t^2  dt=((√π)/(2(e)^(1/4) ))erfi (t) =  =((√π)/(2(e)^(1/4) ))erfi ((1/2)+ln x) +C
$$\int{x}^{\mathrm{ln}\:{x}} {dx}\:\overset{{t}=\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{ln}\:{x}} {=}\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{e}}}\int\mathrm{e}^{{t}^{\mathrm{2}} } {dt}=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt[{\mathrm{4}}]{\mathrm{e}}}\mathrm{erfi}\:\left({t}\right)\:= \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt[{\mathrm{4}}]{\mathrm{e}}}\mathrm{erfi}\:\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{ln}\:{x}\right)\:+{C} \\ $$
Commented by Michaelfaraday last updated on 30/Jan/23
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *