Menu Close

solve-x-R-x-x-2-x-6-note-x-max-q-Z-q-x-




Question Number 146619 by mnjuly1970 last updated on 14/Jul/21
      solve ::   ( x ∈ R )                         [ x ] = [ x^( 2) − x −6 ]            note::   [x ] := max { q ∈ Z ∣ q ≤ x }
$$ \\ $$$$\:\:\:\:{solve}\:::\:\:\:\left(\:{x}\:\in\:\mathbb{R}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{x}\:\right]\:=\:\left[\:{x}^{\:\mathrm{2}} −\:{x}\:−\mathrm{6}\:\right] \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{note}::\:\:\:\left[{x}\:\right]\::=\:{max}\:\left\{\:{q}\:\in\:\mathbb{Z}\:\mid\:{q}\:\leqslant\:{x}\:\right\} \\ $$
Answered by mindispower last updated on 18/Jul/21
[x]=n=[x^2 −x−6]  ⇒n<x<n+1,n≤x^2 −x−6<n+1  ⇒x^2 −x−6<x+1  ⇒x^2 −2x−7<0  ⇒x∈[1−2(√2),1+2(√2)]  if x∈[1−2(√2),−1[∪[−1,0[∪[0,1[∪[1,2[∪[2,1+2(√2)[  case one [x]=−2  ⇒−2≤x^2 −x−6<−1∩[−2,−1[  [x]=−1  −1≤x^2 −x−6<0  ∩[−1,0[  find 5 cases solve one by one
$$\left[{x}\right]={n}=\left[{x}^{\mathrm{2}} −{x}−\mathrm{6}\right] \\ $$$$\Rightarrow{n}<{x}<{n}+\mathrm{1},{n}\leqslant{x}^{\mathrm{2}} −{x}−\mathrm{6}<{n}+\mathrm{1} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{6}<{x}+\mathrm{1} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{7}<\mathrm{0} \\ $$$$\Rightarrow{x}\in\left[\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}},\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right] \\ $$$${if}\:{x}\in\left[\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}},−\mathrm{1}\left[\cup\left[−\mathrm{1},\mathrm{0}\left[\cup\left[\mathrm{0},\mathrm{1}\left[\cup\left[\mathrm{1},\mathrm{2}\left[\cup\left[\mathrm{2},\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\left[\right.\right.\right.\right.\right.\right.\right.\right.\right.\right. \\ $$$${case}\:{one}\:\left[{x}\right]=−\mathrm{2} \\ $$$$\Rightarrow−\mathrm{2}\leqslant{x}^{\mathrm{2}} −{x}−\mathrm{6}<−\mathrm{1}\cap\left[−\mathrm{2},−\mathrm{1}\left[\right.\right. \\ $$$$\left[{x}\right]=−\mathrm{1} \\ $$$$−\mathrm{1}\leqslant{x}^{\mathrm{2}} −{x}−\mathrm{6}<\mathrm{0}\:\:\cap\left[−\mathrm{1},\mathrm{0}\left[\right.\right. \\ $$$${find}\:\mathrm{5}\:{cases}\:{solve}\:{one}\:{by}\:{one} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *