Menu Close

Solve-x-R-x2-1-x-1-x-2-x-4-Source-L-Panaitopol-




Question Number 173485 by mnjuly1970 last updated on 12/Jul/22
       Solve       (x ∈ R )        x2^( (1/x))  +(1/x) 2^( x) = 4          −Source: L.Panaitopol
Solve(xR)x21x+1x2x=4Source:L.Panaitopol
Answered by aleks041103 last updated on 12/Jul/22
obv x>0 for x2^(1/x) +2^x /x = 4  f(x)=x 2^(1/x)   ⇒g(x)=f(x)+f(1/x)  ⇒g(1/x)=f(1/x)+f(x)  ⇒g(x)=g(1/x)=4  ⇒therefore it is enough to search  for x>1 and for ∀x_i >1, s.t. g(x_i )=4 we′ll  have x_i ^� =(1/x_i ), s.t. g(x_i ^� )=4 too.  2^x =e^(ln(2)x) =Σ_(i=0) ^∞ (((ln(2)x)^i )/(i!))  ⇒f(x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!)) (1/x^(i−1) )  ⇒f(1/x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!))x^(i−1)   ⇒g(x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!))(x^(i−1) +(1/x^(i−1) ))  g(x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!))s_(i−1) (x)  s_i (x)=x^i +x^(−i)   s_i ′(x)=ix^(i−1) −ix^(−i−1) =(i/x)(x^i −x^(−i) )  for x>1:  i>0:x^i >1⇒x^(−i) <1⇒x^i −x^(−i) >0  ⇒s_(i>0) ′(x>1)>0  i<0:x^(i<1) ⇒x^(−i) >1⇒x^i −x^(−i) <0  ⇒i(x^i −x^(−i) )>0  ⇒s_(i<0) ′(x>1)>0  i=0:  s_0 ′=0  ⇒g′(x>1)=Σ_(i=0,i≠1) ^∞ (((ln(2))^i )/(i!))s_(i−1) ′(x>1)  since s_(i−1) ′(x>1)>0⇒g′(x>1)>0  ⇒g(x) is strictly increasing for x>1  ⇒for g(x)=4 exists at most 1 soln. x≥1  And g(1)=4  ⇒The only solution to the problem is  x=1
obvx>0forx21/x+2x/x=4f(x)=x21/xg(x)=f(x)+f(1/x)g(1/x)=f(1/x)+f(x)g(x)=g(1/x)=4thereforeitisenoughtosearchforx>1andforxi>1,s.t.g(xi)=4wellhavex¯i=1xi,s.t.g(x¯i)=4too.2x=eln(2)x=i=0(ln(2)x)ii!f(x)=i=0(ln(2))ii!1xi1f(1/x)=i=0(ln(2))ii!xi1g(x)=i=0(ln(2))ii!(xi1+1xi1)g(x)=i=0(ln(2))ii!si1(x)si(x)=xi+xisi(x)=ixi1ixi1=ix(xixi)forx>1:i>0:xi>1xi<1xixi>0si>0(x>1)>0i<0:xi<1xi>1xixi<0i(xixi)>0si<0(x>1)>0i=0:s0=0g(x>1)=i=0,i1(ln(2))ii!si1(x>1)sincesi1(x>1)>0g(x>1)>0g(x)isstrictlyincreasingforx>1forg(x)=4existsatmost1soln.x1Andg(1)=4Theonlysolutiontotheproblemisx=1
Commented by Tawa11 last updated on 13/Jul/22
Great sir
Greatsir
Answered by dragan91 last updated on 12/Jul/22
2^(log_2 x+(1/x)) +2^(log_2 (1/x)+x) =4  2^(log_2 x+(1/x)) +2^(−log_2 x+x) =4  2^(log_2 x+(1/x)) +2^(−log_2 x+x  ) ≥^(AM−GM)   2(√2^(x+(1/x)) )  2^(x+(1/x)) ≤2^2 ∣log_2   x+(1/x)≤2  since x+(1/x)≥^(AM−GM) 2⇒equation has solution   only for x=1
2log2x+1x+2log21x+x=42log2x+1x+2log2x+x=42log2x+1x+2log2x+xAMGM22x+1x2x+1x22log2x+1x2sincex+1xAMGM2equationhassolutiononlyforx=1
Commented by Tawa11 last updated on 13/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *