Menu Close

solve-x-y-2xy-y-z-3yz-z-x-7zx-




Question Number 58622 by mr W last updated on 26/Apr/19
solve  x+y=2xy  y+z=3yz  z+x=7zx
$${solve} \\ $$$${x}+{y}=\mathrm{2}{xy} \\ $$$${y}+{z}=\mathrm{3}{yz} \\ $$$${z}+{x}=\mathrm{7}{zx} \\ $$
Commented by rahul 19 last updated on 26/Apr/19
x=y=z=0 .
$${x}={y}={z}=\mathrm{0}\:. \\ $$
Commented by mr W last updated on 26/Apr/19
thanks!
$${thanks}! \\ $$
Answered by tanmay last updated on 26/Apr/19
(1/y)+(1/x)=2  (1/z)+(1/y)=3  (1/x)+(1/z)=7  2((1/x)+(1/y)+(1/z))=12  (1/(x ))+(1/y)+(1/z)=6  (1/x)=6−3=3→x=(1/3)  (1/y)=6−7=−1→y=−1  (1/z)=6−2=4→z=(1/4)
$$\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{x}}=\mathrm{2} \\ $$$$\frac{\mathrm{1}}{{z}}+\frac{\mathrm{1}}{{y}}=\mathrm{3} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{z}}=\mathrm{7} \\ $$$$\mathrm{2}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right)=\mathrm{12} \\ $$$$\frac{\mathrm{1}}{{x}\:}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\mathrm{6} \\ $$$$\frac{\mathrm{1}}{{x}}=\mathrm{6}−\mathrm{3}=\mathrm{3}\rightarrow{x}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{{y}}=\mathrm{6}−\mathrm{7}=−\mathrm{1}\rightarrow{y}=−\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{z}}=\mathrm{6}−\mathrm{2}=\mathrm{4}\rightarrow{z}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by mr W last updated on 26/Apr/19
nice solution sir, thanks!
$${nice}\:{solution}\:{sir},\:{thanks}! \\ $$
Commented by tanmay last updated on 27/Apr/19
most welcome sir...
$${most}\:{welcome}\:{sir}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *