solve-x-y-e-x-y-x-sinx- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 46609 by maxmathsup by imad last updated on 29/Oct/18 solvexy″−e−xy′=xsinx Commented by maxmathsup by imad last updated on 11/Nov/18 hangementy′=zgivexz′−e−xz=xsinx(he)⇒xz′−e−xz=0⇒xz′=e−xz⇒z′z=e−xx⇒ln∣z∣=∫e−xxdx+α⇒z=Ke∫e−xxdxmvcmethodgvez′=K′e∫e−xxdx+Ke−xxe∫e−xxdx(e)⇒xK′e∫e−xxdx+Ke−xe∫e−xxdx−e−xKe∫e−xxdx=xsinx⇒xK′e∫e−xxdx=xsinx⇒K′=sinxe−∫e−xxdx⇒K(x)=∫.x(sinte−∫e−ttdt)dt+λ⇒z=(∫.x(sinte−∫e−ttdt)dt+λ)e∫e−xxdxbuty′(x)=z(x)⇒y(x)=∫z(x)dx+βandthefunctionzisdetermined. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 4-tan-2-x-2-1-cos-2-x-80-0-Next Next post: Question-46611 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.