Menu Close

solve-x-y-e-x-y-x-sinx-




Question Number 46609 by maxmathsup by imad last updated on 29/Oct/18
solve    x y^(′′)  −e^(−x) y^′    =x sinx
solvexyexy=xsinx
Commented by maxmathsup by imad last updated on 11/Nov/18
hangement y^′ =z give xz^′ −e^(−x) z =xsinx  (he)⇒xz^′  −e^(−x) z =0 ⇒xz^′  =e^(−x) z ⇒(z^′ /z) =(e^(−x) /x) ⇒ln∣z∣=∫ (e^(−x) /x)dx +α ⇒  z =K e^(∫(e^(−x) /x)dx)   mvc method gve z^′ =K^′  e^(∫ (e^(−x) /x)dx)  +K (e^(−x) /x) e^(∫ (e^(−x) /x)dx)   (e) ⇒xK^′  e^(∫ (e^(−x) /x)dx)   +Ke^(−x)  e^(∫ (e^(−x) /x)dx)  −e^(−x) K e^(∫(e^(−x) /x)dx)  =xsinx ⇒  xK^′  e^(∫(e^(−x) /x)dx)  =xsinx ⇒K^′   =sinx e^(−∫ (e^(−x) /x)dx)  ⇒   K(x)= ∫_. ^x  (sint e^(−∫ (e^(−t) /t)dt) )dt +λ ⇒z =(∫_. ^x (sint e^(−∫(e^(−t) /t)dt) )dt +λ)e^(∫ (e^(−x) /x))  dx  but y^′ (x)=z(x) ⇒y(x)=∫ z(x)dx +β  and the function z is determined.
hangementy=zgivexzexz=xsinx(he)xzexz=0xz=exzzz=exxlnz∣=exxdx+αz=Keexxdxmvcmethodgvez=Keexxdx+Kexxeexxdx(e)xKeexxdx+KexeexxdxexKeexxdx=xsinxxKeexxdx=xsinxK=sinxeexxdxK(x)=.x(sinteettdt)dt+λz=(.x(sinteettdt)dt+λ)eexxdxbuty(x)=z(x)y(x)=z(x)dx+βandthefunctionzisdetermined.

Leave a Reply

Your email address will not be published. Required fields are marked *