Menu Close

solve-xy-x-1-y-e-x-ln-1-x-2-




Question Number 90973 by abdomathmax last updated on 27/Apr/20
solve xy^′  +(x+1)y =e^(−x) ln(1+x^2 )
solvexy+(x+1)y=exln(1+x2)
Commented by mathmax by abdo last updated on 27/Apr/20
(he)→xy^′  +(x+1)y =0 ⇒xy^′  =−(x+1)y ⇒(y^′ /y)=−((x+1)/x)  =−1−(1/x) ⇒ln∣y∣ =−x−ln∣x∣ +c ⇒y(x)=k e^(−x) ×(1/(∣x∣))  solution on ]0,+∞[ ⇒y(x) =k (e^(−x) /x)  let use mvc method  y^′  =k^′  (e^(−x) /x) +k{−(1/x^2 )e^(−x)  −(1/x)e^(−x) }  (e)⇒k^′  e^(−x)  −(k/x)e^(−x) −ke^(−x)  +k(x+1)(e^(−x) /x) =e^(−x) ln(1+x^2 ) ⇒  k^′  e^(−x)  −(k/x)e^(−x)  −k e^(−x)  +ke^(−x)  +(k/x)e^(−x)  =e^(−x) ln(1+x^2 ) ⇒  k^′  =ln(1+x^2 ) ⇒k(x) =∫ln(1+x^2 )dx +c  but ∫ ln(1+x^2 )dx =_(byparts)    xln(1+x^2 )−∫x((2x)/(1+x^2 ))dx  =xln(1+x^2 )−2 ∫ ((x^2  +1−1)/(1+x^2 ))dx  =xln(1+x^2 )−2+2arctan(x) ⇒  k(x)=xln(1+x^2 )+2arctan(x) +C ⇒  y(x) =(e^(−x) /x)k(x) =(e^(−x) /x)(xln(1+x^2 )+2arctan(x) +C)
(he)xy+(x+1)y=0xy=(x+1)yyy=x+1x=11xlny=xlnx+cy(x)=kex×1xsolutionon]0,+[y(x)=kexxletusemvcmethody=kexx+k{1x2ex1xex}(e)kexkxexkex+k(x+1)exx=exln(1+x2)kexkxexkex+kex+kxex=exln(1+x2)k=ln(1+x2)k(x)=ln(1+x2)dx+cbutln(1+x2)dx=bypartsxln(1+x2)x2x1+x2dx=xln(1+x2)2x2+111+x2dx=xln(1+x2)2+2arctan(x)k(x)=xln(1+x2)+2arctan(x)+Cy(x)=exxk(x)=exx(xln(1+x2)+2arctan(x)+C)
Commented by mathmax by abdo last updated on 27/Apr/20
forgive ∫ ln(1+x^2 )dx =xln(1+x^2 )−2x +2arctan(x) +c ⇒  y(x) =(e^(−x) /x)( xln(1+x^2 )−2x +2arctan(x)+C)
forgiveln(1+x2)dx=xln(1+x2)2x+2arctan(x)+cy(x)=exx(xln(1+x2)2x+2arctan(x)+C)
Answered by Joel578 last updated on 27/Apr/20
y′(x) + p(x)y(x) = r(x)  Has the solution  y(x) = (1/(F(x)))[∫ F(x)r(x) dx + C]  where F(x) is integrating factor and C is integration constant    y′ + (1 + (1/x))y = ((e^(−x)  ln (1+x^2 ))/x)  Integrating factor   F(x) = exp[∫ 1 + (1/x) dx] = exp(x + ln x) = xe^x   hence  y(x) = (e^(−x) /x)[∫ xe^x .((e^(−x)  ln (1+x^2 ))/x) dx + C]             = (e^(−x) /x)[∫ ln (1+x^2 ) dx + C]    Use integration by part: u = ln (1+x^2 ), dv = dx   I = x ln (1 + x^2 ) − ∫ ((2x^2 )/(1 + x^2 )) dx     = x ln (1 + x^2 ) + ∫ ((2 − 2 − 2x^2 )/(1 + x^2 )) dx     = x ln (1 + x^2 ) + ∫ (2/(1 + x^2 )) − 2 dx     = x ln (1 + x^2 ) + 2tan^(−1) x − 2x    ∴ y(x) = (e^(−x) /x)[x ln (1 + x^2 ) + 2tan^(−1) x − 2x + C]
y(x)+p(x)y(x)=r(x)Hasthesolutiony(x)=1F(x)[F(x)r(x)dx+C]whereF(x)isintegratingfactorandCisintegrationconstanty+(1+1x)y=exln(1+x2)xIntegratingfactorF(x)=exp[1+1xdx]=exp(x+lnx)=xexhencey(x)=exx[xex.exln(1+x2)xdx+C]=exx[ln(1+x2)dx+C]Useintegrationbypart:u=ln(1+x2),dv=dxI=xln(1+x2)2x21+x2dx=xln(1+x2)+222x21+x2dx=xln(1+x2)+21+x22dx=xln(1+x2)+2tan1x2xy(x)=exx[xln(1+x2)+2tan1x2x+C]
Commented by mathmax by abdo last updated on 27/Apr/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *