Question Number 90973 by abdomathmax last updated on 27/Apr/20

Commented by mathmax by abdo last updated on 27/Apr/20
![(he)→xy^′ +(x+1)y =0 ⇒xy^′ =−(x+1)y ⇒(y^′ /y)=−((x+1)/x) =−1−(1/x) ⇒ln∣y∣ =−x−ln∣x∣ +c ⇒y(x)=k e^(−x) ×(1/(∣x∣)) solution on ]0,+∞[ ⇒y(x) =k (e^(−x) /x) let use mvc method y^′ =k^′ (e^(−x) /x) +k{−(1/x^2 )e^(−x) −(1/x)e^(−x) } (e)⇒k^′ e^(−x) −(k/x)e^(−x) −ke^(−x) +k(x+1)(e^(−x) /x) =e^(−x) ln(1+x^2 ) ⇒ k^′ e^(−x) −(k/x)e^(−x) −k e^(−x) +ke^(−x) +(k/x)e^(−x) =e^(−x) ln(1+x^2 ) ⇒ k^′ =ln(1+x^2 ) ⇒k(x) =∫ln(1+x^2 )dx +c but ∫ ln(1+x^2 )dx =_(byparts) xln(1+x^2 )−∫x((2x)/(1+x^2 ))dx =xln(1+x^2 )−2 ∫ ((x^2 +1−1)/(1+x^2 ))dx =xln(1+x^2 )−2+2arctan(x) ⇒ k(x)=xln(1+x^2 )+2arctan(x) +C ⇒ y(x) =(e^(−x) /x)k(x) =(e^(−x) /x)(xln(1+x^2 )+2arctan(x) +C)](https://www.tinkutara.com/question/Q91052.png)
Commented by mathmax by abdo last updated on 27/Apr/20

Answered by Joel578 last updated on 27/Apr/20
![y′(x) + p(x)y(x) = r(x) Has the solution y(x) = (1/(F(x)))[∫ F(x)r(x) dx + C] where F(x) is integrating factor and C is integration constant y′ + (1 + (1/x))y = ((e^(−x) ln (1+x^2 ))/x) Integrating factor F(x) = exp[∫ 1 + (1/x) dx] = exp(x + ln x) = xe^x hence y(x) = (e^(−x) /x)[∫ xe^x .((e^(−x) ln (1+x^2 ))/x) dx + C] = (e^(−x) /x)[∫ ln (1+x^2 ) dx + C] Use integration by part: u = ln (1+x^2 ), dv = dx I = x ln (1 + x^2 ) − ∫ ((2x^2 )/(1 + x^2 )) dx = x ln (1 + x^2 ) + ∫ ((2 − 2 − 2x^2 )/(1 + x^2 )) dx = x ln (1 + x^2 ) + ∫ (2/(1 + x^2 )) − 2 dx = x ln (1 + x^2 ) + 2tan^(−1) x − 2x ∴ y(x) = (e^(−x) /x)[x ln (1 + x^2 ) + 2tan^(−1) x − 2x + C]](https://www.tinkutara.com/question/Q91041.png)
Commented by mathmax by abdo last updated on 27/Apr/20
