Menu Close

solve-xy-x-2-1-y-x-2-sin-2x-




Question Number 115367 by Bird last updated on 25/Sep/20
solve xy^(′′) −(x^2 +1)y^′   =x^2 sin(2x)
solvexy(x2+1)y=x2sin(2x)
Answered by Olaf last updated on 26/Sep/20
  xy′′−(x^2 +1)y′ = x^2 sin2x  Let u = ((y′)/x)  y′′ = xu′+u  x(xu′+u)−(x^2 +1)xu = x^2 sin2x  xu′+u−(x^2 +1)u = xsin2x  xu′−x^2 u = xsin2x  u′−xu = sin2x  e^(−(x^2 /2)) u′−xe^(−(x^2 /2)) u = e^(−(x^2 /2)) ((e^(ix) −e^(−ix) )/(2i))  ⇒ Integration by parts.  The function u is a linear combination  of functions erf.  It′s not a simple expression !
xy(x2+1)y=x2sin2xLetu=yxy=xu+ux(xu+u)(x2+1)xu=x2sin2xxu+u(x2+1)u=xsin2xxux2u=xsin2xuxu=sin2xex22uxex22u=ex22eixeix2iIntegrationbyparts.Thefunctionuisalinearcombinationoffunctionserf.Itsnotasimpleexpression!

Leave a Reply

Your email address will not be published. Required fields are marked *