Menu Close

solve-xy-y-2x-1-x-4-




Question Number 50431 by Abdo msup. last updated on 16/Dec/18
solve xy^′  +y =((2x)/( (√(1−x^4 ))))
solvexy+y=2x1x4
Commented by Abdo msup. last updated on 16/Dec/18
(he)     xy^′  +y =0 ⇒xy^′ =−y ⇒(y^′ /y)=−(1/x) ⇒ln∣y∣=−ln∣x∣ +k ⇒  y(x)=(K/(∣x∣))   let take x>0⇒y=(K/x)  mvc method give   y^′ =(K^′ /x) −(K/x^2 )  and (e) ⇔  K^′  −(K/x) +(K/x) =((2x)/( (√(1−x^4 )))) ⇒  K^′  = ((2x)/( (√(1−x^4 )))) ⇒ K(x)= ∫   ((2xdx)/( (√(1−x^4 ))))  changement x^2 =sint  give K(x) =∫  ((cost dt)/( (√(1−sin^2 t)))) =∫ dt +c =t +λ  =arcsin(x^2 ) +λ  ⇒ y(x)= ((arcsin(x^2 ) +λ)/x) =(λ/x) + ((arcsin(x^2 ))/x) .
(he)xy+y=0xy=yyy=1xlny∣=lnx+ky(x)=Kxlettakex>0y=Kxmvcmethodgivey=KxKx2and(e)KKx+Kx=2x1x4K=2x1x4K(x)=2xdx1x4changementx2=sintgiveK(x)=costdt1sin2t=dt+c=t+λ=arcsin(x2)+λy(x)=arcsin(x2)+λx=λx+arcsin(x2)x.
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Dec/18
xdy+ydx=((2x)/( (√(1−(x^2 )^2 ))))dx  d(xy)=((d(x^2 ))/( (√(1−(x^2 )^2 ))))  ∫d(xy)=∫((d(x^2 ))/( (√(1−(x^2 )^2 ))))  xy=sin^(−1) (x^2 )+c
xdy+ydx=2x1(x2)2dxd(xy)=d(x2)1(x2)2d(xy)=d(x2)1(x2)2xy=sin1(x2)+c

Leave a Reply

Your email address will not be published. Required fields are marked *