Menu Close

solve-y-2ay-1-a-2-y-x-e-ax-a-real-




Question Number 90969 by abdomathmax last updated on 27/Apr/20
solve y^(′′) −2ay^′  +(1+a^2 )y =x +e^(ax)   a real
solvey2ay+(1+a2)y=x+eaxareal
Commented by niroj last updated on 27/Apr/20
 y^(′′) −2ay^′ +(1+a^2 )y=x +e^(ax)      (D^2 −2aD+1+a^2 )y= x+e^(ax)     A.E.,   m^2 −2am+(1+a^2 )=0    m= ((2a+^− (√(4a^2 −4(1+a^2 ))))/2)      = ((2a+^− (√(4a^2 −4−4a^2 )))/2)= ((2a+^− (√(−4)))/2)   m= a+^− i   CF= e^(ax) (C_1 cos x+C_2 sinx)   PI= ((x+e^(ax) )/(D^2 −2aD+(1+a^2 )))   = (1/(1+a^2 ))[ (1/(1+((D^2 −2aD)/(1+a^2 ))))]x+ (e^(ax) /(a^2 −2a^2 +1+a^2 ))  = (1/(1+a^2 ))(1+((D^2 −2aD)/(1+a^2 )))^(−1) x+ (e^(ax) /1)  = (1/(1+a^2 ))[ 1−(((D^2 −2aD)/(1+a^2 )))+(((D^2 −2aD)/(1+a^2 )))^2 −...]x + e^(ax)    = (1/(1+a^2 ))[ 1+((2aD)/(1+a^2 ))]x+e^(ax)   = (1/(1+a^2 ))[ x +((2a)/(1+a^2 ))Dx]+e^(ax)   = (1/(1+a^2 ))[x+((2a)/(1+a^2 ))]+e^(ax)    y=CF+PI   y= e^(ax) (C_1 cosx+C_2 sinx)+ (x/(1+a^2 ))+((2a)/((1+a^2 )^2 ))+e^(ax)  //.
y2ay+(1+a2)y=x+eax(D22aD+1+a2)y=x+eaxA.E.,m22am+(1+a2)=0m=2a+4a24(1+a2)2=2a+4a244a22=2a+42m=a+iCF=eax(C1cosx+C2sinx)PI=x+eaxD22aD+(1+a2)=11+a2[11+D22aD1+a2]x+eaxa22a2+1+a2=11+a2(1+D22aD1+a2)1x+eax1=11+a2[1(D22aD1+a2)+(D22aD1+a2)2]x+eax=11+a2[1+2aD1+a2]x+eax=11+a2[x+2a1+a2Dx]+eax=11+a2[x+2a1+a2]+eaxy=CF+PIy=eax(C1cosx+C2sinx)+x1+a2+2a(1+a2)2+eax//.
Commented by mathmax by abdo last updated on 28/Apr/20
thank you sir.
thankyousir.
Commented by niroj last updated on 03/May/20
��

Leave a Reply

Your email address will not be published. Required fields are marked *