Menu Close

Solve-y-2y-2y-secax-




Question Number 104034 by mohammad17 last updated on 19/Jul/20
Solve: y^(′′) +2y^′ +2y=secax
Solve:y+2y+2y=secax
Answered by bramlex last updated on 19/Jul/20
HE : ℓ^2 +2ℓ+2=0  (ℓ+1)^2 +1=0 →ℓ=−1±i   y_h  = e^(−x) (C_1 cos x+C_2 sin x)
HE:2+2+2=0(+1)2+1=0=1±iyh=ex(C1cosx+C2sinx)
Commented by mohammad17 last updated on 19/Jul/20
sir i want yp ?
siriwantyp?
Commented by bobhans last updated on 19/Jul/20
y_1 = e^(−x) cos x →y_1 ′=−e^(−x) cos x−e^(−x) sin x                         →y_1 ′=−e^(−x) (cos x+sin x)  y_2 = e^(−x) sin x→y_2 ′=−e^(−x) sin x+e^(−x) cos x                          →y_2 ′=−e^(−x) (sin x−cos x)  W(y_1 ,y_2 )= determinant (((            e^(−x) cos x                                  e^(−x) sin x)),((−e^(−x) (cos x+sin x)      −e^(−x) (sin x−cos x)))  = −e^(−2x) (cos xsin x−cos^2 x)+e^(−2x) (sin x  cos x +sin^2 x) = e^(−2x)   I_1 = e^(2x) ∫ e^(−x) cos x.sec x dx = −e^x   I_2 = e^(2x)  ∫ e^(−x) sin x.sec x dx   I_2 =(1/2)e^(2x)  ∫ e^(−x) sin 2x dx   y_p  = −y_1 I_2 + y_2 I_1
y1=excosxy1=excosxexsinxy1=ex(cosx+sinx)y2=exsinxy2=exsinx+excosxy2=ex(sinxcosx)W(y1,y2)=|excosxexsinxex(cosx+sinx)ex(sinxcosx|=e2x(cosxsinxcos2x)+e2x(sinxcosx+sin2x)=e2xI1=e2xexcosx.secxdx=exI2=e2xexsinx.secxdxI2=12e2xexsin2xdxyp=y1I2+y2I1
Answered by mathmax by abdo last updated on 19/Jul/20
y^(′′)  +2y^′  +2y =(1/(cos(x)))  h→r^2  +2r +2 =0→Δ^′  =−1 ⇒r_1 =−1+i and r_2 =−1−i ⇒  y_h =ae^((−1+i)x)  +b e^((−1−i)x)  =e^(−x) {αcosx +βsinx} =αu_1  +βu_2   W(u_1  ,u_2 ) = determinant (((e^(−x)  cosx          e^(−x) sinx)),((−(cosx+sinx)e^(−x)     (cosx −sinx)e^(−x) )))  =e^(−2x) {cos^2 x−cosx sinx}+e^(−2x) {sin^2 x+sinx cosx} =e^(−2x)  ≠0  W_1 = determinant (((o                e^(−x) sinx)),(((1/(cos(ax)))        (cosx−sinx)e^(−x) )))=−e^(−x)  ((sinx)/(cos(x)))  W_2 = determinant (((e^(−x) cosx                                  0)),((−(cosx +sinx)e^(−x)        (1/(cosx)))))=e^(−x)    v_1 =∫ (w_1 /w)dx =−∫  ((e^(−x)  sinx)/(e^(−2x)  cosx))dx =−∫ e^x  ((sinx)/(cosx))dx  v_2 =∫ (w_2 /w)dx =∫  (e^(−x) /e^(−2x) )dx =∫ e^x  dx =e^x   ⇒  y_p =u_1 v_1  +u_2 v_2 =−e^(−x)  cosx ∫ ((e^x sinx)/(cosx))dx + sinx   the general solution is y =y_h  +y_p
y+2y+2y=1cos(x)hr2+2r+2=0Δ=1r1=1+iandr2=1iyh=ae(1+i)x+be(1i)x=ex{αcosx+βsinx}=αu1+βu2W(u1,u2)=|excosxexsinx(cosx+sinx)ex(cosxsinx)ex|=e2x{cos2xcosxsinx}+e2x{sin2x+sinxcosx}=e2x0W1=|oexsinx1cos(ax)(cosxsinx)ex|=exsinxcos(x)W2=|excosx0(cosx+sinx)ex1cosx|=exv1=w1wdx=exsinxe2xcosxdx=exsinxcosxdxv2=w2wdx=exe2xdx=exdx=exyp=u1v1+u2v2=excosxexsinxcosxdx+sinxthegeneralsolutionisy=yh+yp

Leave a Reply

Your email address will not be published. Required fields are marked *