solve-y-2y-x-2-sinx-and-y-0-0-y-0-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 96772 by abdomathmax last updated on 04/Jun/20 solvey″−2y=x2sinxandy(0)=0,y′(0)=1 Answered by mathmax by abdo last updated on 04/Jun/20 (he)→y″−2y=0→r2−2=0⇒r=+−2⇒yh=ae2x+be−2x=au1+bu2W(u1,u2)=|ex2e−x22ex2−2e−2x|=−22W1=|oe−x2x2sinx−2e−2x|=−x2sinxe−x2W2=|ex202ex2x2sinx|=x2sinxex2v1=∫W1Wdx=122∫x2sinxe−x2dx=122Im(∫x2eix−x2dx)∫x2e(i−2)xdx=byparts1i−2x2e(i−2)x−1i−2∫2xe(i−2)x[dx=x2i−2e(i−2)x−2i−2{xi−2e(i−2)x−1i−2e(i−2)x}=x2i−2e(i−2)x−2x(i−2)2e(i−2)x+2(i−2)2e(i−2)x=…v2=∫W2Wdx=−122∫x2sinxex2=….(wefollowthesameway)⇒yp=u1v1+u2v2andgeneralsolutionisy=yh+yp Answered by mathmax by abdo last updated on 05/Jun/20 letuseLaplacetransform(e)⇒L(y(2))−2L(y)=L(x2sinx)⇒x2L(y)−y(0)−y′(0)−2L(y)=L(x2sinx)⇒(x2−2)L(y)=1+L(x2sinx)wehaveL(x2sinx)=∫0∞t2sinte−xtdt=Im(∫0∞t2eit−xtdt)but∫0∞t2e(i−x)tdt=byparts[t2i−xe(i−x)t]0∞−∫0∞2ti−xe(i−x)tdt=−2i−x∫0∞te(i−x)tdt=2x−i{[ti−xe(i−x)t]0∞−∫0∞1i−xe(i−x)tdt}=2(x−i)2×[1i−xe(i−x)t]0∞=2(x−i)3=2(x+i)3(x2+1)3=2(x3+3x2i−3x−i)(x2+1)3=2x3+6x2i−6x−2i(x2+1)3⇒L(x2sinx)=6x2−2(x2+1)3(e)⇒(x2−2)L(y)=1+6x2−2(x2+1)3⇒L(y)=1x2−2+6x2−2(x2−2)(x2+1)3⇒y(x)=L−1(1x2−2)+L−1(6x2−2(x2−2)(x2+1)3)1x2−2=122(1x−2−1x+2)⇒L−1(1x2−2)=122(ex2−e−x2)letdecomposeF(x)=6x2−2(x2−2)(x2+1)3F(x)=ax−2+bx+2+a1x+b1x2+1+a2x+b2(x2+1)2+a3x+b3(x2+1)3…becontinued… Commented by mathmax by abdo last updated on 05/Jun/20 erroratline2→x2L(y)−xy(o)−y′(0)−2L(y)=L(x2sinx)butthisdontchangetheresultbecausey(0)=0! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-y-y-sinx-x-Next Next post: Question-162309 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.