Menu Close

solve-y-2y-y-xe-x-2-




Question Number 123593 by Bird last updated on 26/Nov/20
solve y^(′′)  +2y^′  −y=xe^(−x^2 )
$${solve}\:{y}^{''} \:+\mathrm{2}{y}^{'} \:−{y}={xe}^{−{x}^{\mathrm{2}} } \\ $$
Answered by mathmax by abdo last updated on 27/Nov/20
h→r^2  +2r−1=0→Δ^′  =1+1=2 ⇒r_1 =−1+(√2) and r_2 =−1−(√2)  y_h =ae^((−1+(√2))x)  +b e^((−1−(√2))x )  =au_1 +bu_2   W(u_1 ,u_2 )= determinant (((e^((−1+(√2))x)           e^((−1−(√2))x) )),(((−1+(√2))e^((−1+(√2)))     (−1−(√2))e^((−1−(√2))) )))  =(−1−(√2))e^(−2x)  +(1−(√2))e^(−2x)  =−2(√2)e^(−2x)  ≠0  W_1 = determinant (((o           e^((−1−(√2))x) )),((xe^(−x^2 )        (−1−(√2))e^((−1−(√2))x) )))=xe^(−x^2 ) e^((−1−(√2))x)   W_2 = determinant (((e^((−1+(√2))x)            0)),(((−1+(√2))e^((−1+(√2))x)     xe^(−x^2 ) )))=xe^(−x^2 ) e^((−1+(√2))x)   v_1 =∫ (w_1 /w)dx =∫  ((xe^(−x^2 ) e^((−1−(√2))x) )/(−2(√2)e^(−2x) ))dx =−(1/(2(√2)))∫  xe^(−x^2 )  e^((1−(√2))x) dx  v_2 =∫ (w_2 /w)dx =∫  ((xe^(−x^2 ) e^((−1+(√2))x) )/(−2(√2)e^(−2x) ))dx =−(1/(2(√2)))∫ xe^(−x^2 )  e^((1+(√2))x)  dx  ⇒y_p =u_1 v_1  +u_2 v_2   and general soution is y =y_h +y_p
$$\mathrm{h}\rightarrow\mathrm{r}^{\mathrm{2}} \:+\mathrm{2r}−\mathrm{1}=\mathrm{0}\rightarrow\Delta^{'} \:=\mathrm{1}+\mathrm{1}=\mathrm{2}\:\Rightarrow\mathrm{r}_{\mathrm{1}} =−\mathrm{1}+\sqrt{\mathrm{2}}\:\mathrm{and}\:\mathrm{r}_{\mathrm{2}} =−\mathrm{1}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{y}_{\mathrm{h}} =\mathrm{ae}^{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}} \:+\mathrm{b}\:\mathrm{e}^{\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{x}\:} \:=\mathrm{au}_{\mathrm{1}} +\mathrm{bu}_{\mathrm{2}} \\ $$$$\mathrm{W}\left(\mathrm{u}_{\mathrm{1}} ,\mathrm{u}_{\mathrm{2}} \right)=\begin{vmatrix}{\mathrm{e}^{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}} \:\:\:\:\:\:\:\:\:\:\mathrm{e}^{\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{x}} }\\{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{e}^{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)} \:\:\:\:\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{e}^{\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)} }\end{vmatrix} \\ $$$$=\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{e}^{−\mathrm{2x}} \:+\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{e}^{−\mathrm{2x}} \:=−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{e}^{−\mathrm{2x}} \:\neq\mathrm{0} \\ $$$$\mathrm{W}_{\mathrm{1}} =\begin{vmatrix}{\mathrm{o}\:\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{x}} }\\{\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \:\:\:\:\:\:\:\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{e}^{\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{x}} }\end{vmatrix}=\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{e}^{\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{x}} \\ $$$$\mathrm{W}_{\mathrm{2}} =\begin{vmatrix}{\mathrm{e}^{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}} \:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{e}^{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}} \:\:\:\:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } }\end{vmatrix}=\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{e}^{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}} \\ $$$$\mathrm{v}_{\mathrm{1}} =\int\:\frac{\mathrm{w}_{\mathrm{1}} }{\mathrm{w}}\mathrm{dx}\:=\int\:\:\frac{\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{e}^{\left(−\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{x}} }{−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{e}^{−\mathrm{2x}} }\mathrm{dx}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int\:\:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{e}^{\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{x}} \mathrm{dx} \\ $$$$\mathrm{v}_{\mathrm{2}} =\int\:\frac{\mathrm{w}_{\mathrm{2}} }{\mathrm{w}}\mathrm{dx}\:=\int\:\:\frac{\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{e}^{\left(−\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}} }{−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{e}^{−\mathrm{2x}} }\mathrm{dx}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int\:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{e}^{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{x}} \:\mathrm{dx} \\ $$$$\Rightarrow\mathrm{y}_{\mathrm{p}} =\mathrm{u}_{\mathrm{1}} \mathrm{v}_{\mathrm{1}} \:+\mathrm{u}_{\mathrm{2}} \mathrm{v}_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{general}\:\mathrm{soution}\:\mathrm{is}\:\mathrm{y}\:=\mathrm{y}_{\mathrm{h}} +\mathrm{y}_{\mathrm{p}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *