solve-y-3y-2y-sinx-x- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 98657 by mathmax by abdo last updated on 15/Jun/20 solvey″−3y′+2y=sinxx Answered by maths mind last updated on 15/Jun/20 y″−3y′+2y=0⇒y=aex+be2xlety=kexparticularsokution⇒y′=(k′+k)ex,y″=(k″+2k′+k)ex⇒(k″−k′)ex=sin(x)x⇒k″−k′=sin(x)e−xx=Im{e(i−1)xx}k′−k=∫e(i−1)xxdx=∫euudu=Ei(u)=Ei((i−1)x)⇒k′−k=Ei((i−1)x)k=sex⇒s′=∫e−xEi((i−1)x)=[−e−xEi(i−1)x)]+∫e−x.e(i−1)xxdx=Ei((i−2)x)k=exEi((i−2)x))Yp=Im{e2xEi((i−2)x))}e2xIm{∫−∞xe(i−2)xxdx}=e2xIm{∫e−2x(cos(x)+isin(x))xdx}=e2x[Ei((i−2)x)−Ei((−i−2)x)2i]S=aex+be2x+e2x[Ei((i−2)x)−Ei((−i−2)x)2i] Commented by mathmax by abdo last updated on 15/Jun/20 thankyousir. Answered by mathmax by abdo last updated on 15/Jun/20 (he)→y″−3y′+2y=0→r2−3r+2=0⇒r2−1−3r+3=0⇒(r−1)(r+1)−3(r−1)=0⇒(r−1)(r−2)=0⇒r=1orr=2⇒yh=aex+be2x=au1+bu2W(u1,u2)=|exe2xex2e2x|=2e3x−e3x=e3x≠0W1=|0e2xsinxx2e2x|=−e2xsinxxW2=|ex0exsinxx|=exsinxxv1=∫W1Wdx=∫−e2xsinxxe3xdx=−∫e−5xsinxxdxv2=∫W2Wdx=∫exsinxxe3x=∫e−2xsinxxdx⇒yp=u1v1+u2v2=−ex∫xe−5tsinttdt+e2x∫xe−2tsinttdtthegeneralsolutionisy=yh+yp=aex+be2x−ex∫xe−5tsinttdt+e2x∫xe−2tsinttdt Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-give-gt-0-find-the-value-of-0-1-dx-1-x-1-x-Next Next post: let-considere-f-and-u-differenciable-function-prove-that-d-dt-a-u-t-f-t-x-dx-a-u-t-f-t-t-x-dx-f-t-u-t-u-t- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.