Menu Close

solve-y-3y-2y-sinx-x-




Question Number 98657 by mathmax by abdo last updated on 15/Jun/20
solve  y^(′′)  −3y^′   +2y =((sinx)/x)
solvey3y+2y=sinxx
Answered by maths mind last updated on 15/Jun/20
y′′−3y′+2y=0  ⇒y=ae^x +be^(2x)   let y=ke^x particular sokution  ⇒y′=(k′+k)e^x ,y′′=(k′′+2k′+k)e^x ⇒  (k′′−k′)e^x =((sin(x))/x)  ⇒k′′−k′=((sin(x)e^(−x) )/x)=Im{(e^((i−1)x) /x)}  k′−k=∫(e^((i−1)x) /x)dx=∫(e^u /u)du=Ei(u)=Ei((i−1)x)  ⇒k′−k=E_i ((i−1)x)  k=se^x ⇒s′=∫e^(−x) E_i ((i−1)x)  =[−e^(−x) E_i (i−1)x)]+∫e^(−x) .(e^((i−1)x) /x)dx  =E_i ((i−2)x)  k=e^x E_i ((i−2)x))  Y_p =Im{e^(2x) E_i ((i−2)x))}  e^(2x) Im{∫_(−∞) ^x (e^((i−2)x) /x)dx}  =e^(2x) Im{∫((e^(−2x) (cos(x)+isin(x)))/x)dx}  =e^(2x) [((E_i ((i−2)x)−E_i ((−i−2)x))/(2i))]  S=ae^x +be^(2x) +e^(2x) [((E_i ((i−2)x)−E_i ((−i−2)x))/(2i))]
y3y+2y=0y=aex+be2xlety=kexparticularsokutiony=(k+k)ex,y=(k+2k+k)ex(kk)ex=sin(x)xkk=sin(x)exx=Im{e(i1)xx}kk=e(i1)xxdx=euudu=Ei(u)=Ei((i1)x)kk=Ei((i1)x)k=sexs=exEi((i1)x)=[exEi(i1)x)]+ex.e(i1)xxdx=Ei((i2)x)k=exEi((i2)x))Yp=Im{e2xEi((i2)x))}e2xIm{xe(i2)xxdx}=e2xIm{e2x(cos(x)+isin(x))xdx}=e2x[Ei((i2)x)Ei((i2)x)2i]S=aex+be2x+e2x[Ei((i2)x)Ei((i2)x)2i]
Commented by mathmax by abdo last updated on 15/Jun/20
thank you sir.
thankyousir.
Answered by mathmax by abdo last updated on 15/Jun/20
(he)→y^(′′) −3y^′  +2y =0 →r^2 −3r +2 =0 ⇒r^2 −1 −3r+3 =0 ⇒  (r−1)(r+1)−3(r−1) =0 ⇒(r−1)(r−2)=0 ⇒r=1 or r=2  ⇒y_h =a e^x  +b e^(2x)  =au_1  +b u_2   W(u_1 ,u_2 ) = determinant (((e^x        e^(2x) )),((e^x        2e^(2x) )))=2e^(3x) −e^(3x)  =e^(3x)  ≠0  W_1 = determinant (((0          e^(2x) )),((((sinx)/x)     2e^(2x) )))=−e^(2x)  ((sinx)/x)  W_2 = determinant (((e^x            0)),((e^x          ((sinx)/x))))=e^x  ((sinx)/x)  v_1 =∫ (W_1 /W)dx  =∫  ((−e^(2x)  ((sinx)/x))/e^(3x) ) dx =−∫ e^(−5x)  ((sinx)/x)dx  v_2 =∫ (W_2 /W)dx =∫  ((e^x  ((sinx)/x))/e^(3x) ) =∫e^(−2x ) ((sinx)/x) dx ⇒  y_p =u_1 v_1  +u_2 v_2 =−e^x  ∫^x  e^(−5t)  ((sint)/t) dt +e^(2x)  ∫^x  e^(−2t)  ((sint)/t) dt  the general solution is y =y_h  +y_p   =ae^x  +be^(2x)  −e^x  ∫^x  e^(−5t)  ((sint)/t)dt +e^(2x)  ∫^x  e^(−2t)  ((sint)/t) dt
(he)y3y+2y=0r23r+2=0r213r+3=0(r1)(r+1)3(r1)=0(r1)(r2)=0r=1orr=2yh=aex+be2x=au1+bu2W(u1,u2)=|exe2xex2e2x|=2e3xe3x=e3x0W1=|0e2xsinxx2e2x|=e2xsinxxW2=|ex0exsinxx|=exsinxxv1=W1Wdx=e2xsinxxe3xdx=e5xsinxxdxv2=W2Wdx=exsinxxe3x=e2xsinxxdxyp=u1v1+u2v2=exxe5tsinttdt+e2xxe2tsinttdtthegeneralsolutionisy=yh+yp=aex+be2xexxe5tsinttdt+e2xxe2tsinttdt

Leave a Reply

Your email address will not be published. Required fields are marked *