Menu Close

Solve-y-4-dx-2xy-3-dy-ydx-xdy-x-3-y-3-




Question Number 40442 by rahul 19 last updated on 21/Jul/18
Solve :  y^4 dx + 2xy^3 dy = ((ydx− xdy)/(x^3 y^3 )).
$$\mathrm{Solve}\:: \\ $$$$\mathrm{y}^{\mathrm{4}} \mathrm{d}{x}\:+\:\mathrm{2}{x}\mathrm{y}^{\mathrm{3}} \mathrm{dy}\:=\:\frac{\mathrm{yd}{x}−\:{x}\mathrm{dy}}{{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} }. \\ $$
Answered by ajfour last updated on 21/Jul/18
y^2 (y^2 dx+2xydy)=((d(x/y))/(x^3 y))  ⇒ y^2 d(xy^2 )=((d(x/y))/(x^3 y))      ...(i)  _____________________  ⇔ (xy^2 )^m d(xy^2 )=((x/y))^n d((x/y))  ⇒  m−n=3   and         2m+n=3  ⇒   m=2  and  n=−1  _____________________  So   (i) becomes      ∫(xy^2 )^2 d(xy^2 )= ∫((d(x/y))/((x/y)))  ⇒ (((xy^2 )^3 )/3)=ln (x/y)+c .
$${y}^{\mathrm{2}} \left({y}^{\mathrm{2}} {dx}+\mathrm{2}{xydy}\right)=\frac{{d}\left({x}/{y}\right)}{{x}^{\mathrm{3}} {y}} \\ $$$$\Rightarrow\:{y}^{\mathrm{2}} {d}\left({xy}^{\mathrm{2}} \right)=\frac{{d}\left({x}/{y}\right)}{{x}^{\mathrm{3}} {y}}\:\:\:\:\:\:…\left({i}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\Leftrightarrow\:\left({xy}^{\mathrm{2}} \right)^{{m}} {d}\left({xy}^{\mathrm{2}} \right)=\left(\frac{{x}}{{y}}\right)^{{n}} {d}\left(\frac{{x}}{{y}}\right) \\ $$$$\Rightarrow\:\:{m}−{n}=\mathrm{3}\:\:\:{and} \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{m}+{n}=\mathrm{3} \\ $$$$\Rightarrow\:\:\:{m}=\mathrm{2}\:\:{and}\:\:{n}=−\mathrm{1} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${So}\:\:\:\left({i}\right)\:{becomes} \\ $$$$\:\:\:\:\int\left({xy}^{\mathrm{2}} \right)^{\mathrm{2}} {d}\left({xy}^{\mathrm{2}} \right)=\:\int\frac{{d}\left({x}/{y}\right)}{\left({x}/{y}\right)} \\ $$$$\Rightarrow\:\frac{\left({xy}^{\mathrm{2}} \right)^{\mathrm{3}} }{\mathrm{3}}=\mathrm{ln}\:\frac{{x}}{{y}}+{c}\:. \\ $$
Commented by rahul 19 last updated on 22/Jul/18
Great! ����
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18
 y^2 dx+2xydy=(1/(x^3 y^3 )).d((x/y))  y^2 d(x)+xd(y^2 )=(1/(x^3 y^3 )).d((x/y))  d(xy^2 )=((d((x/y)))/(y^6 ((x/y))^3 ))  y^6 d(xy^2 )=((d((x/y)))/(((x/y))^3 ))  contd....wait pls...recheck the questionpls...   (x^2 /y^2 ) .y^6 .d(xy^2 )=((d((x/y)))/(((x/y))))  (xy^2 )^2 d(xy^2 )=((d((x/y)))/(((x/y))))  (((xy^2 )^3 )/3)=ln((x/y))+lnc
$$\:{y}^{\mathrm{2}} {dx}+\mathrm{2}{xydy}=\frac{\mathrm{1}}{{x}^{\mathrm{3}} {y}^{\mathrm{3}} }.{d}\left(\frac{{x}}{{y}}\right) \\ $$$${y}^{\mathrm{2}} {d}\left({x}\right)+{xd}\left({y}^{\mathrm{2}} \right)=\frac{\mathrm{1}}{{x}^{\mathrm{3}} {y}^{\mathrm{3}} }.{d}\left(\frac{{x}}{{y}}\right) \\ $$$${d}\left({xy}^{\mathrm{2}} \right)=\frac{{d}\left(\frac{{x}}{{y}}\right)}{{y}^{\mathrm{6}} \left(\frac{{x}}{{y}}\right)^{\mathrm{3}} } \\ $$$${y}^{\mathrm{6}} {d}\left({xy}^{\mathrm{2}} \right)=\frac{{d}\left(\frac{{x}}{{y}}\right)}{\left(\frac{{x}}{{y}}\right)^{\mathrm{3}} } \\ $$$${contd}….{wait}\:{pls}…{recheck}\:{the}\:{questionpls}… \\ $$$$\:\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }\:.{y}^{\mathrm{6}} .{d}\left({xy}^{\mathrm{2}} \right)=\frac{{d}\left(\frac{{x}}{{y}}\right)}{\left(\frac{{x}}{{y}}\right)} \\ $$$$\left({xy}^{\mathrm{2}} \right)^{\mathrm{2}} {d}\left({xy}^{\mathrm{2}} \right)=\frac{{d}\left(\frac{{x}}{{y}}\right)}{\left(\frac{{x}}{{y}}\right)} \\ $$$$\frac{\left({xy}^{\mathrm{2}} \right)^{\mathrm{3}} }{\mathrm{3}}={ln}\left(\frac{{x}}{{y}}\right)+{lnc} \\ $$
Commented by rahul 19 last updated on 22/Jul/18
thank you sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *