Menu Close

solve-y-4y-4y-0-with-variation-method-




Question Number 100902 by bemath last updated on 29/Jun/20
solve y′′−4y′+4y=0   with variation method
$$\mathrm{solve}\:\mathrm{y}''−\mathrm{4y}'+\mathrm{4y}=\mathrm{0}\: \\ $$$$\mathrm{with}\:\mathrm{variation}\:\mathrm{method} \\ $$
Commented by bramlex last updated on 29/Jun/20
AE : λ^2 −4λ+4 =0  (λ−2)^2 = 0 ⇒λ = 2; 2  y = Ae^(2x)  + Bxe^(2x)  ★
$${AE}\::\:\lambda^{\mathrm{2}} −\mathrm{4}\lambda+\mathrm{4}\:=\mathrm{0} \\ $$$$\left(\lambda−\mathrm{2}\right)^{\mathrm{2}} =\:\mathrm{0}\:\Rightarrow\lambda\:=\:\mathrm{2};\:\mathrm{2} \\ $$$${y}\:=\:{Ae}^{\mathrm{2}{x}} \:+\:{Bxe}^{\mathrm{2}{x}} \:\bigstar\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *