Question Number 173507 by JordanRoddy last updated on 12/Jul/22
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${solve}\:\:\:{y}−\left({x}+\mathrm{1}\right)\:{y}'\:+\:\frac{\mathrm{2}{x}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\:\:\:\:\:{x}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{y}'\:+\left(\frac{{x}}{\mathrm{2}}\:+\mathrm{1}\right)\:{y}\:=\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by JordanRoddy last updated on 12/Jul/22
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${solve}\:\:\:{y}−\left({x}+\mathrm{1}\right)\:{y}'\:+\:\frac{\mathrm{2}{x}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\:\:\:\:\:{x}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{y}'\:+\left(\frac{{x}}{\mathrm{2}}\:+\mathrm{1}\right)\:{y}\:=\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mokys last updated on 12/Jul/22
$$\left.\mathrm{1}\right)\:\frac{{dy}}{{dx}}\:−\:\frac{\mathrm{1}}{{x}+\mathrm{1}}{y}\:=\:\frac{\mathrm{2}{x}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$ \\ $$$${P}\left({x}\right)\:=\:−\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\:\:,\:{Q}\left({x}\right)\:=\:\frac{\mathrm{2}{x}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$ \\ $$$$\:{I}.{f}\:=\:{e}^{\int{P}\left({x}\right){dx}} \:=\:{e}^{\int\:−\frac{\mathrm{1}}{{x}+\mathrm{1}}{dx}} =\:{e}^{{ln}\frac{\mathrm{1}}{{x}+\mathrm{1}}} =\:\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$ \\ $$$$\left({I}.{f}\right){y}\:=\:\int\:\left({I}.{f}\right){Q}\left({x}\right){dx} \\ $$$$ \\ $$$$\frac{{y}}{{x}+\mathrm{1}}\:=\mathrm{2}\:\int\:\frac{{x}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} }\:{dx} \\ $$$$ \\ $$$${let}:\:{m}\:=\:{x}+\mathrm{1}\:\rightarrow\:{x}\:=\:{m}−\mathrm{1}\:\rightarrow{dx}={dm} \\ $$$$ \\ $$$$\frac{{y}}{{x}+\mathrm{1}}\:=\:\mathrm{2}\:\int\:\frac{\left({m}−\mathrm{1}\right)\left(\mathrm{2}{m}−\mathrm{3}\right)}{{m}^{\mathrm{4}} }\:{dm} \\ $$$$ \\ $$$$\frac{{y}}{{x}+\mathrm{1}}\:=\:\mathrm{2}\:\int\:\frac{\mathrm{2}{m}^{\mathrm{2}} −\mathrm{5}{m}\:+\mathrm{3}}{{m}^{\mathrm{4}} }\:{dm} \\ $$$$ \\ $$$$\frac{{y}}{{x}+\mathrm{1}}\:=\:\mathrm{2}\:\int\:\left(\frac{\mathrm{2}}{{m}^{\mathrm{2}} }\:−\:\frac{\mathrm{5}}{{m}^{\mathrm{3}} }\:+\:\frac{\mathrm{3}}{{m}^{\mathrm{4}} }\right){dm} \\ $$$$ \\ $$$$\frac{{y}}{{x}+\mathrm{1}}\:=\:−\frac{\mathrm{4}}{{m}}\:+\:\frac{\mathrm{5}}{{m}^{\mathrm{2}} }\:−\:\frac{\mathrm{2}}{{m}^{\mathrm{3}} }\:+\:{K} \\ $$$$ \\ $$$${Now}:\:{m}\:=\:{x}+\mathrm{1} \\ $$$$ \\ $$$$\therefore\:{y}\:=\:\frac{\mathrm{5}}{{x}\:+\:\mathrm{1}}\:−\:\frac{\mathrm{2}}{\left(\:{x}\:+\:\mathrm{1}\:\right)^{\mathrm{2}} }\:−\:\mathrm{4}\:+\:{K}\left({x}+\mathrm{1}\right) \\ $$$$ \\ $$$$\bigstar{Mohammad}\:{Aldolaimy}\bigstar \\ $$
Commented by Tawa11 last updated on 13/Jul/22
$$\mathrm{Great}\:\mathrm{sir}. \\ $$